Simple exploration of 5631-96-9

5631-96-9 2-(2-Chloroethoxy)tetrahydro-2H-pyran 254951, aTetrahydropyrans compound, is more and more widely used in various fields.

5631-96-9, 2-(2-Chloroethoxy)tetrahydro-2H-pyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5631-96-9, (1) 15 ml of dimethylformamide, 1.06 g of 2-(tetrahydropyran-2-yl-oxy)ethyl chloride, 0.97 g of potassium carbonate and 0.1 g of potassium iodide were added to 1.30 g of 1,2,3,3a,4,5,6,7-octahydro-7-oxo-azepino[1,2,3-lm]-beta-carboline, and the mixture was stirred at 80 C. for 4 hours. After the reaction was completed, the reaction mixture was poured into ice-water and the aqueous mixture was extracted with ethyl acetat. The extract was washed with water, dried and condensed. The oily residue thus obtained was purified by silica gel chromatography (Solvent: 1% methanol-chloroform), whereby 934 mg of 1,2,3,3a,4,5,6,7-octahydro-3-[2-(tetrahydropyran-2-yl-oxy)ethyl]-7-oxo-azepino[1,2,3-lm]-beta-carboline were obtained as an oil. Yield: 47% IRnumaxfilm (cm-1): 1695, 1620, 760 Mass (m/e): 368 (M+) NMR (delta, CDCl3): 8.67-8.30 (m, 1H, aromatic); 7.73-7.13 (m, 3H, aromatic); 4.63 (broad, 1H STR34 4.83-2.52 (m, 13H); 2.50-1.00 (m, 10H)

5631-96-9 2-(2-Chloroethoxy)tetrahydro-2H-pyran 254951, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; Tanabe Seiyaku Co., Ltd.; US4228168; (1980); A;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 1228779-96-1

1228779-96-1 3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide 57474953, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1228779-96-1,3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide,as a common compound, the synthetic route is as follows.

1228779-96-1, Compound 19-7 was dissolved in a mixed solvent of EtOH:H 2 O=3:2,(2 eq) lithium hydroxide was added and stirred at room temperature overnight.After the reaction is completed, the reaction solution is spun dry, and a small amount of water is added to dissolve.Then, after adjusting to pH=6 with 1 M aqueous HCl solution, a white solid precipitated.Filter and dry the filter cake. The filter cake compound is dissolved in dichloromethane,Add (3 eq) EDCI, (0.3 eq) DMAP,After stirring at room temperature for half an hour, compound 1-2 (0.8 eq) was added.It is then reacted at room temperature for 6-8 hours. After the reaction is completed, the reaction is quenched with water.Extract three times with dichloromethane, and combine the organic phases with saturated brine.After drying anhydrous sodium sulfate, mix the sample on the column.CH2Cl2: MeOH = 100:1 – 40:1 gave compound S19.

1228779-96-1 3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide 57474953, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; Chinese Academy Of Sciences Shanghai Pharmaceutical Institute; Zhang Ao; Tan Wenfu; Liu Xiaohua; Huang Wenjing; Zhang Yu; Yang Jun; (37 pag.)CN110143974; (2019); A;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 65412-03-5

65412-03-5 4-(2-Aminoethyl)tetrahydro-2H-pyran 2773198, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.65412-03-5,4-(2-Aminoethyl)tetrahydro-2H-pyran,as a common compound, the synthetic route is as follows.,65412-03-5

Ethyl 2-(3,5-dibromopyrazin-2- ylamino)acetate (See Example 6.B) (1.0 g, 2.95 mmol) and 2-(tetrahydro-2H-pyran-4- yl)ethanamine (0.381 g, 2.95 mmol) were placed in a microwave vial, dimethylsulfoxide (2 mL) was added and the resulting mixture was heated in a Biotage Emrys Optimizer microwave reactor at 150 0C for 3600 s. The crude reaction mixture was purified using silica gel chromatography (33 % ethyl acetate in hexanes) to yield the title compound (0.5 g, 1.3 mmol, 44 % yield). MS (ESI) m/z 387.1 [M]+, 389.1 [M+2]+.

65412-03-5 4-(2-Aminoethyl)tetrahydro-2H-pyran 2773198, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; SIGNAL PHARMACEUTICALS, LLC; ELSNER, Jan; HARRIS, Roy, L.; LEE, Branden; MORTENSEN, Deborah; PACKARD, Garrick; PAPA, Patrick; PERRIN-NINKOVIC, Sophie; RIGGS, Jennifer; SANKAR, Sabita; SAPIENZA, John; SHEVLIN, Graziella; TEHRANI, Lida; XU, Weiming; ZHAO, Jingjing; PARNES, Jason; MADAKAMUTIL Loui; FULTZ Kimberly; NARLA, Rama K.; WO2010/62571; (2010); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 1245724-46-2

1245724-46-2, The synthetic route of 1245724-46-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1245724-46-2,(S)-Tetrahydro-2H-pyran-3-amine hydrochloride,as a common compound, the synthetic route is as follows.

(S)-Tetrahydro-2H-pyran-3-amine hydrochloride (1.99 g, 14.48 mmol) in MeCN (10 mL) wasadded drop wise to a mixture of DIPEA ( 6.30 mL, 36.19 mmol) and ethyl 2,4-dichloropyrimidine-5-carboxylate (3.20 g, 14.48 mmol) in MeCN (60 mL) at 0C over a period of 5 min under air. Thereaction mixture was stirred for 4 h, slowly allowing to warm to rt, then was stirred at rt for 18 h5 and concentrated in vacuo, diluted with EtOAc (100 mL), and washed with water then with sat.brine. The organic layer was dried over MgS04, filtered and concentrated in vacuo, and purified byfcc, eluting with 0 – 40% EtOAc in n-heptane, to afford the title compound (3.24 g, 78%) as ayellow oil; 1H NMR (400 MHz, DMSO) 1.32 (3H, t), 1.49- 1.6 (lH, m), 1.63- 1.79 (2H, m), 1.83- 1.94 (lH, m), 3.48 (lH, dd), 3.54-3.65 (2H, m), 3.74 (lH, dd), 4.08-4.19 (lH, m), 4.33 (2H, q),10 8.57 (lH, d), 8.64 (lH, s); m/z [M-Hl284.

1245724-46-2, The synthetic route of 1245724-46-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; ASTRAZENECA AB; CANCER RESEARCH TECHNOLOGY LIMITED; FINLAY, Maurice, Raymond, Verschoyle; GOLDBERG, Frederick, Woolf; HOWARD, Martin, Richard; TING, Attilla, Kuan, Tsuei; (145 pag.)WO2019/238929; (2019); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 53911-68-5

The synthetic route of 53911-68-5 has been constantly updated, and we look forward to future research findings.

53911-68-5, 4-(4-Chlorophenyl)dihydro-2H-pyran-2,6(3H)-dione is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

53911-68-5, Prepared by refluxing an equimolar mixture of 3-(4-chlorophenyl)glutaric anhydride and commercial 4-chloro-2-hydroxyaniline in dichloromethane for 0.5 h. After cooling to rt the precipitated product is isolated by suction filtration, washed, and dried to provide 90% of Lambda/-(2-hydroxy-4-chlorophenyl)-3-(4-chlorophenyl)glutaramic acid as light red crystals.

The synthetic route of 53911-68-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; UNIVERSITAET DES SAARLANDES; ENGEL, Matthias; FROeHNER, Wolfgang; STROBA, Adriane; BIONDI, Ricardo M.; WO2010/43711; (2010); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 14774-37-9

As the paragraph descriping shows that 14774-37-9 is playing an increasingly important role.

14774-37-9, Tetrahydropyran-4-methanol is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 2: Synthesis of toluene-4-sulfonic acid tetrahydro-pyran-4-ylmethyl ester; Prepared as described by adaptation of the following literature reference:Radziszewski, J. G. et al. J. Am. Chem. Soc. 1993, 115, 8401.To a solution of 97 g (810 mmol) of (tetrahydro-pyran-4-yl)-methanol in 2-methyltetrahydrofuran (190 mL) are added 165 mL of 50% aqueous NaOH solution. To this stirred suspension is added dropwise with cooling a solution of p-toluene-sulfonylchloride (283 g, 1.46 mol) in 2-methyltetrahydrofuran (280 mL). The reaction is stirred at 30-35 C. for 18 h. The suspension is poured into a mixture of ice-water (280 mL) and aqueous HCl solution (37%, 203 mL). After addition of methylcyclohexane (1.4 L) and further ice-water (0.2 L), the reaction mixture is stirred for 2 h in an ice-bath. The resulting crystalline precipitate is isolated by filtration and washed with methylcyclohexane (0.5 L) and water (0.5 L). Drying under reduced pressure at 40 C. gave 216 g of toluene-4-sulfonic acid tetrahydro-pyran-4-ylmethyl ester as white crystalline solid. Yield: 99%, ES-MS: m/z 271 [M+H]; 1H NMR (400 MHz, CHLOROFORM-d) delta ppm1.19-1.35 (2H, m), 1.54-1.63 (2H, m), 1.85-2.02 (1H, m), 2.45 (3H, s), 3.28-3.39 (2H, m), 3.86 (2H, d, J=6.60 Hz), 3.93 (2H, dd, J=11.37, 4.52 Hz), 7.35 (2H, d, J=9.29 Hz), 7.78 (2H, d, J=8.31 Hz), 14774-37-9

As the paragraph descriping shows that 14774-37-9 is playing an increasingly important role.

Reference£º
Patent; Boehringer Ingelheim International GmbH; US2010/76029; (2010); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 1228779-96-1

1228779-96-1 3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide 57474953, aTetrahydropyrans compound, is more and more widely used in various fields.

1228779-96-1, 3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A 50-L jacketed reactor equipped with a mechanical stirrer, nitrogen inlet/outlet, heating mantle and reflux condenser was inerted with flow through nitrogen and charged with 3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide (493 g, 0.95 equiv) EDCI (552 g, 1.75 equiv), DMAP (402 g, 2. equiv) and DCM (5 L, 5 vo I). Separately a 20-L carboy was charged with 2-((1 /-/-Pyrrolo[2,3-b]pyridin-5-yl)oxy)- 4-(4-((4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1 ,T-biphenyl]-2-yl)methyl)piperazin-1- yl)benzoic acid hydrochloride salt (1 kg, 1.64 moles), DCM (10 L, 10 vol) and stirred. Triethylamine (920 mL, 4.00 equiv.) was added and the batch was stirred at room temperature. This solution was dosed into the jacketed reactor over 3 h. The batch was stirred at room temperature for 8-25 h indicated reaction was complete. Batch was distilled down to ~ 5 L and diluted with 2-MeTHF (15 L, 15 vol). The batch was then distilled from ~ 20 L to ~10 L. b) Work up: The batch temperature was adjusted to 40C over 15 min and was washed with two 10% AcOH washes (10 L each) and then separating phases. The batch was then washed with 2 N NaOH (10 L, 10 vol) by heating to 40 ¡À 5 C after addition, stirring for 15 min and then phase separation. Isopropyl alcohol (IPA, 15 L, 15 vol) was charged to the reactor and the batch was distilled down from 21 L to ~ 10 L. Separately maleic acid (287 g, 1.5 equiv) was dissolved in water (1 L, 1 vol) and this solution was charged to the reactor. Upon addition of the maleic acid solution, it was heated to 70 C over 20 min and aged. The slurry was then filtered and rinsed with IPA (2.0 L). The cake was dried to constant weight to give crude maleate salt (1.525 kg)., 1228779-96-1

1228779-96-1 3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide 57474953, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; ALBANY MOLECULAR RESEARCH, INC.; GREGG, Brian, Thomas; GEISS, William, Bert; HERR, Robert, Jason; RAI, Ravi, R; (39 pag.)WO2020/23435; (2020); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 185815-59-2

As the paragraph descriping shows that 185815-59-2 is playing an increasingly important role.

185815-59-2, 4-Isobutyldihydro-2H-pyran-2,6(3H)-dione is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A three-necked flask equipped with an addition funnel, thermometer pocket, drying tube and a mechanical stirrer, was charged with toluene (400 ml), (S)-(-)-phenylethylamine(142.35 g,1.1764 mole), and 4-dimethylaminopyridine (0.7176 g, 0.0059 mole). The mixture was cooled to a temperature of -10C to -15C, followed by addition of a solution of 3-isobutyl glutaric anhydride (100 g, 0.59 mole) [e.g. obtained in accordance with the process disclosed Drugs of the Future, 24 (8), 862-870 (1999) or according to Example 1 step (A) above] in toluene (100 ml), over a period of 45-60 minutes, and stirring for additional 1.5-2 hours, at a temperature of -10C to -15C. The mixture was then extracted with 10% aqueous solution of NaOH (500 ml), and the aqueous phase was washed with toluene (1×250 ml). The pH of the aqueous phase was adjusted to 2-2.5 by adding a solution of hydrochloric acid (1-12N). The aqueous phase was further extracted with toluene (1x 800 ml) at a temperature of 70-80C. The toluene layer was washed with 10% sodium chloride solution {700ml) at a temperature of 70-80C followed by crystallization to get 125 g (73.0% yield) of a white solid of (3S)-5-methyl-3-(2-oxo-2-{[(1S)-1-phenylethyljamino}ethyl) hexanoic acid with an optical purity of 99.75 %, as measured by chiral HPLC., 185815-59-2

As the paragraph descriping shows that 185815-59-2 is playing an increasingly important role.

Reference£º
Patent; TEVA PHARMACEUTICALS INTERNATIONAL GMBH; JANAGANI, Satyanarayana; (38 pag.)WO2017/19791; (2017); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 2081-44-9

2081-44-9, 2081-44-9 Tetrahydro-2H-pyran-4-ol 74956, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2081-44-9,Tetrahydro-2H-pyran-4-ol,as a common compound, the synthetic route is as follows.

To a solution of tetrahydro-2H-pyran-4-ol (4 mL, 41.11 mmol) in DCM (60 mL) was added TEA (9 mL, 63.9 mmol) at 0. After stirring 5 min, methanesulfonyl chloride (3.5 mL, 45 mmol) was added slowly to the mixture. The resulting mixture was stirred for 1 h and warmed to rt, and then further stirred overnight. The reaction mixture was diluted with water (50 mL) . The resulting mixture was extracted with DCM (100 mL ¡Á 3) . The combined organic layers were dried over anhydrous Na2SO4and concentrated in vacuo to give a light yellow solid product (7 g, 94.5) .[1586]MS (ESI, pos. ion) m/z: no response.

2081-44-9, 2081-44-9 Tetrahydro-2H-pyran-4-ol 74956, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; SUNSHINE LAKE PHARMA CO., LTD.; LIU, Bing; ZHANG, Yingjun; CHENG, Changchung; HUANG, Jiuzhong; BAI, Shun; REN, Xingye; LI, Zhi; ZHOU, Youbai; (368 pag.)WO2016/615; (2016); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 1240390-36-6

The synthetic route of 1240390-36-6 has been constantly updated, and we look forward to future research findings.

1240390-36-6, tert-Butyl ((3R,4R)-4-aminotetrahydro-2H-pyran-3-yl)carbamate is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 27 6-((3R,4R)-3-Aminotetrahydro-2H-pyran-4-ylamino)-4-(6-isopropyl-5-methylpyridin-2-ylamino)pyridazine-3-carboxamide A mixture of 6-chloro-4-(6-isopropyl-5-methylpyridin-2-ylamino) pyridazine-3-carboxamide (223 mg, 729 mumol, prepared as described in example 25), tert-butyl (3R,4R)-4-aminotetrahydro-2H-pyran-3-ylcarbamate (315 mg, 1.46 mmol) and NMP (4 mL) was stirred at 140 C. for 18 h. The NMP was distilled off using a Kugelrohr apparatus under high vacuum to give a light brown solid. The crude material was dissolved in dichloromethane and MeOH and adsorbed on silica gel, then purified by chromatography (spherical silica 20-45 mum, 11 g, Versaflash from Supelco, eluting with 100% dichloromethane to 88:11.4:0.6 dichloromethane:methanol:NH4OH over 40 min) to give 109 mg of intermediate as a brown solid. This intermediate was dissolved in dichloromethane (2 mL) and TFA (740 mg, 500 muL, 6.49 mmol) was added. The mixture was stirred at room temperature for 16 h. The TFA and the dichloromethane were concentrated in vacuo and the residue obtained was purified by chromatography (spherical silica 20-45 mum, 11 g, Versaflash from Supelco, eluting with 100% dichloromethane to 88:11.4:0.6 dichloromethane:methanol:NH4OH over 40 min) to give a brown solid. The solid was suspended in 0.5 mL heptane and 10 drops of ethanol. The mixture was briefly sonicated and then heated, then cooled and the solvents decanted. The solid residue was dried overnight under high vacuum to give 6-((3R,4R)-3-aminotetrahydro-2H-pyran-4-ylamino)-4-(6-isopropyl-5-methylpyridin-2-ylamino)pyridazine-3-carboxamide (22 mg, 8%) as a brown solid. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 11.18-11.31 (m, 1H), 8.26 (s, 1H), 7.95 (br. s., 1H), 7.26 (d, J=8.34 Hz, 1H), 6.55 (d, J=8.08 Hz, 1H), 5.73 (d, J=7.33 Hz, 1H), 5.29 (br. s., 1H), 3.99 (br. s., 1H), 3.90 (d, J=8.08 Hz, 1H), 3.78 (d, J=11.37 Hz, 1H), 3.66 (q, J=7.07 Hz, 1H), 3.57 (d, J=11.37 Hz, 1H), 3.44 (t, J=11.12 Hz, 1H), 3.20 (dt, J=13.33, 6.60 Hz, 1H), 2.97 (br. s., 1H), 2.21 (s, 3H), 1.89 (d, J=11.12 Hz, 1H), 1.61-1.77 (m, 1H), 1.25 (dd, J=6.57, 3.54 Hz, 6H), 1.18 (t, J=7.07 Hz, 1H); LC-MS 386 [M+H]+., 1240390-36-6

The synthetic route of 1240390-36-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Hoffman-La Roche Inc.; Hermann, Johannes Cornelius; Kennedy-Smith, Joshua; Lucas, Matthew C.; Padilla, Fernando; Soth, Michael; US2013/178478; (2013); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics