Brief introduction of 53911-68-5

The synthetic route of 53911-68-5 has been constantly updated, and we look forward to future research findings.

53911-68-5,53911-68-5, 4-(4-Chlorophenyl)dihydro-2H-pyran-2,6(3H)-dione is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The solution of commercial 4-nitro-l,2-phenylenediamine (0.31 g) and 3-(4- chlorophenyl)glutaric anhydride (0.45 g) in 1,4-dioxane (3 ml) was stirred under reflux for 0.75 h. 4M HCI in 1,4-dioxane (3 ml) was added and the solution is further heated to reflux for 1 h. After cooling to rt the precipitate is collected by suction filtration and washed with 1,4-dioxane and diethyl ether. The crude is recrystallised from acetic acid to give 4-(5-benzoyl-2-benzimidazolyl)-3-(4- chlorophenyl)butanoic acid HCI (0.59 g) as beige coloured solid. 1H-NMR (500 MHz, DMSO-d6)): delta (ppm) = 2.72 (dd, J = 16.2, 8.7 Hz, IH), 2.84(dd, J = 16.2, 6.1 Hz, IH), 3.41 (dd, J = 14.9, 8.9 Hz, IH), 3.52 (dd, J = 14.9, 7.0 Hz, IH), 3.85 (m, IH), 7.30 (d, J = 8.5 Hz, 2H), 7.36 (d, J = 8.5 Hz, 2H), 7.85 (d, J = 9.0 Hz, IH), 8.23 (dd, J = 9.0, 2.2 Hz, IH), 8.51 (d, J = 2.1 Hz, IH). 13C-NMR and DEPT (125 MHz, DMSO-d6) : delta (ppm) = 33.46 (CH2), 39.28 (CH), 39.64 (CH2), 110.68 (CH), 114.50 (CH), 119.70 (CH), 128.31 (2 CH), 129.19 (2 CH), 131.36 (C), 132.76 (C), 136.93 (C), 140.97 (C), 144.01 (C), 156.90 (C), 172.23 (CO).

The synthetic route of 53911-68-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; UNIVERSITAET DES SAARLANDES; ENGEL, Matthias; FROeHNER, Wolfgang; STROBA, Adriane; BIONDI, Ricardo M.; WO2010/43711; (2010); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 1228779-96-1

1228779-96-1, 1228779-96-1 3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide 57474953, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1228779-96-1,3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide,as a common compound, the synthetic route is as follows.

In a 100-mL flask (flask I) 2-[(1H-Pyrrolo[2,3-b]pyridine-5-yl)oxy]-4-[4-[[2-(4-chlorophenyl)-4,4-dimethylcyclohex-1-enyl]methyl]piperazin-1-yl]benzoic acid sulfate salt (compound 2a) (assay: 14.88 mmol), Et3N (12 mL, 87.5 mmol) and dichloromethane (85 mL) were combined at 20-25C and stirred for complete dissolution. In a 250-mL three necked round bottom flask (flask II) equipped with magnetic stirrer, thermometer, 3-nitro-4-[[(tetrahydropyran-4-yl)methyl]amino]-benzenesulfonamide (4.60 g, 14.58 mmol), DMAP (7.12 g, 58.34 mmol), N,N-diisopropylcarbodiimide (6 mL, 38.5 mmol) and dichloromethane (106 mL) were combined and stirred for 15 minutes. The resulting acid solution (flask I) was slowly added to the suspension of the sulfonamide (flask II) within 1 hour and reaction mixture agitated at 35-40C until reaction completion. The reaction mixture was extracted with 10% aqueous acetic acid (2×57 mL), 5% aqueous NaHCO3 (57 mL) and 5% aqueous NaCl (57 mL). After phase separation the organic layer was evaporated. Yield: 55%

1228779-96-1, 1228779-96-1 3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide 57474953, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; ASSIA CHEMICAL INDUSTRIES LTD.; TEVA PHARMACEUTICALS USA, INC.; POTARINE JUHASZ, Zsuzsa; STRUBA, Szabolcs; NEMETHNE RACZ, Csilla; TOTH, Zoltan Gabor; SZILAGYI, Andrea; KERTI-FERENCZI, Renata; MOLNAR, Sandor Janos; PASZTOR-DEBRECZENI, Nora; HAJKO, Janos; (100 pag.)WO2017/156398; (2017); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 14774-37-9

14774-37-9 Tetrahydropyran-4-methanol 2773573, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14774-37-9,Tetrahydropyran-4-methanol,as a common compound, the synthetic route is as follows.

Step 1 a Synthesis of Tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate To a stirred solution of (tetrahydro-2H-pyran-4-yl)methanol (300 mg, 2.58 mM) in DCM (5 ml), triethyl amine (784 mg, 7.75 mM) was added. The reaction mixture was stirred for 5 min at 0 QC followed by the addition of 4-methylbenzene-1 -sulfonyl chloride (542 mg, 2.84 mM). The reaction mixture was further stirred for 2h. RM, concentrated and purified by column chromatography to afford the title compound tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate (634 mg). Yield: 91 %; 1 H NMR (CDCI3, 300 MHz): delta 7.81 (d, J=8.1 Hz, 2H), 7.38 (d, J=8.1 Hz, 2H), 3.97-3.86 (m, 4H), 3.36 (t, J=6.5 Hz, 2H), 2.47 (s, 3H), 1 .97-1 .94 (m, 1 H), 1 .62 (d, J=12 Hz, 2H), 1 .35-1 .23 (m, 2H), MS: m/z 293 (M+Na)., 14774-37-9

14774-37-9 Tetrahydropyran-4-methanol 2773573, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; PIRAMAL ENTERPRISES LIMITED; KUMAR, Sanjay; SHARMA, Rajiv; MAHAJAN, Vishal, Ashok; SAWARGAVE, Sangameshwar, Prabhakar; WO2013/128378; (2013); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 53911-68-5

The synthetic route of 53911-68-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.53911-68-5,4-(4-Chlorophenyl)dihydro-2H-pyran-2,6(3H)-dione,as a common compound, the synthetic route is as follows.,53911-68-5

The solution of 4-chloro-1,2-phenylenediamine (2.85 g) and 3-(4-chlorophenyl)-glutaric anhydride (4.49 g) in 1,4-dioxane (7 ml) was stirred at rt for 1 h. The precipitate is collected by suction filtration, washed with 1,4-dioxane, and dried in vacuo to provide a mixture of regioisomeric amides (5.37 g) as beige coloured solid.This solid is dissolved in acetic acid (10 ml) with heating. Conc. HCl (4 ml) is added and the resulting solution is heated to reflux for 2 h. Then all volatiles are removed at the water aspirator and the still hot residue is suspended in acetone (20 ml). The suspension is cooled to rt with stirring and the solid is isolated by filtration. After washings with acetone the off- white solid is dried in vacuo to yield the hydrochloride salt of 4-(5-chloro-2-benzimidazolyl)-3-(4-chlorophenyl)butanoic acid (4.66 g).1H-NMR (500 MHz, DMSO-d6): delta (ppm)=2.72 (dd, J=16.2, 8.6 Hz, 1H), 2.83 (dd, J=16.2, 6.2 Hz, 1H), 3.43 (dd, J=14.9, 9.2 Hz, 1H), 3.55 (dd, J=14.9, 6.9 Hz, 1H), 3.86 (m, 1H), 7.30 (d, J=8.5 Hz, 2H), 7.36 (d, J=8.5 Hz, 1H), 7.48 (dd, J=8.8, 1.9 Hz, 1H), 7.73 (d, J=8.8 Hz, 1H), 7.81 (d, J=1.8 Hz, 1H).13C-NMR and DEPT (125 MHz, DMSO-d6): delta (ppm)=32.67 (CH2), 39.19 (CH), 39.60 (CH2), 113.55 (CH), 115.25 (CH), 125.51 (CH), 128.34 (2CH), 129.14 (2CH), 129.56 (C), 129.96 (C), 131.43 (C), 131.92 (C), 140.70 (C), 153.27 (C), 172.11 (CO). MS (+ESI): m/z=349 (M+H).

The synthetic route of 53911-68-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; UNIVERSITAET DES SAARLANDES; US2012/46307; (2012); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 1194-16-7

1194-16-7 2,2-Dimethyltetrahydropyran-4-one 1738159, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1194-16-7,2,2-Dimethyltetrahydropyran-4-one,as a common compound, the synthetic route is as follows.

To a solution of 2,2-dimethyltetrahydropyran-4-one (10.4 g, 81.14 mmol) in dichloromethane (40 mL) and boron fluoride ethyl ether (11.2 m1,48% ethyl ether) was added (diazomethyl)trimethylSilane (48.0 mL, 96.0 mmol, 2 M in hexane) dropwise at -30 C. After addition, the resulting solution was stirred for 1H at -30 C and then quenched by addition of saturated sodium bicarbonate (30 mL). The resulting mixture was extracted with dichloromethane (3 x 100 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated to dryness in vacuo. The residue was purified by column chromatography (silica gel, 100-200 mesh, 0 to 18% ethyl acetate in petroleum ether) to afford a mixture of 7,7-dimethyloxepan-4-one and 2,2-dimethyloxepan-4-one (2.6 g, 22.5% yield, ratiol : 1) as a pale yellow oil., 1194-16-7

1194-16-7 2,2-Dimethyltetrahydropyran-4-one 1738159, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; GENENTECH, INC.; F. HOFFMANN-LA ROCHE AG; PATEL, Snahel; HAMILTON, Gregory; STIVALA, Craig; CHEN, Huifen; ZHAO, Guiling; (1236 pag.)WO2017/4500; (2017); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 25637-16-5

As the paragraph descriping shows that 25637-16-5 is playing an increasingly important role.

25637-16-5, 4-Bromotetrahydropyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

25637-16-5, Step 1: To a solution of Core B (700.00 mg, 2.84 mmol, 1.00 eq) in MeCN (14 mL) was added CS2CO3 (1.85 g, 5.68 mmol, 2.00 eq) at 0C. After 30 min, 4- 0242952445-01 bromotetrahydropyran (703.03 mg, 4.26 mmol, 1.50 eq) was added. The mixture was stirred at 100C for 16 h in a sealed tube. The reaction mixture was filtered and the filtrate was concentrated. The crude product was purified by prep-HPLC (TFA) to give compound 39_6 (45.0 mg, 136.18 mupiiotaomicron, 4.8% yield) as a yellow solid. LCMS: RT = 0.702 min, mlz 331.1 [M+H]+ NMR (CDCb, 400 MHz) delta 8.42-8.40 (d, / = 5.6 Hz, 1H), 7.94 (s, 1H), 7.11- 7.10 (d, / = 5.2 Hz, 1H), 4.37-4.33 (m, 1H), 4.19-4.15 (m, 1H), 3.59-3.54 (m, 2H), 3.28- 3.26 (d, / = 6.4 Hz, 2H), 2.6 (s, 3H), 2.44-2.40 (m, 2H), 1.87-1.84 (m, 2H), 1.05-1.02 (m, 1H), 0.55-0.50 (m, 2H), 0.33-0.30 (m, 2H).

As the paragraph descriping shows that 25637-16-5 is playing an increasingly important role.

Reference£º
Patent; YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM LTD; BEN NERIAH, Yinon; BRACHYA, Guy; BURSTAIN, Ido; MINZEL, Waleed; SNIR-ALKALAY, Irit; VACCA, Joseph; LI, Dansu; (129 pag.)WO2017/21969; (2017); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 1240390-36-6

1240390-36-6, As the paragraph descriping shows that 1240390-36-6 is playing an increasingly important role.

1240390-36-6, tert-Butyl ((3R,4R)-4-aminotetrahydro-2H-pyran-3-yl)carbamate is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 2 {(3R,4R)-4-[7-(Imidazole[1,2-b]pyridazin-3-ylcarbamoyl)-thieno[3,2-d]pyrimidin-2-ylamino]-tetrahydro-pyran-3-yl}-carbamic acid tert-butyl ester To a solution of 2-chloro-thieno[3,2-d]pyrimidine-7-carboxylic acid imidazol[1,2-b]pyridazin-3-ylamide (0.154 g, 0.466 mmol) and of tert-butyl (3R,4R)-4-aminotetrahydro-2H-pyran-3-ylcarbamate (0.121 g, 0.559 mmol) in dioxane (4 mL) was added diisopropylethylamine (0.244 mL, 1.4 mmol). The reaction mixture was heated at 120 C. overnight. The reaction mixture was cooled and then diluted with dichloromethane, washed with aqueous sodium carbonate, then brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue obtained was then purified by chromatography (silica, 40 g, 0 to 15% MeOH in dichloromethane) to give {(3R,4R)-4-[7-(imidazole[1,2-b]pyridazin-3-ylcarbamoyl)-thieno[3,2-d]pyrimidin-2-ylamino]-tetrahydro-pyran-3-yl}-carbamic acid tert-butyl ester (0.163 g, 0.319 mmol, 68.5%) as a yellow solid. LCMS m/z [M+H]=511.

1240390-36-6, As the paragraph descriping shows that 1240390-36-6 is playing an increasingly important role.

Reference£º
Patent; Hoffmann-La Roche Inc.; Chen, Shaoqing; Hermann, Johannes Cornelius; Le, Nam T.; Lucas, Matthew C.; Padilla, Fernando; US2013/178460; (2013); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 61363-56-2

As the paragraph descriping shows that 61363-56-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.61363-56-2,2H-Pyran-3,5(4H,6H)-dione,as a common compound, the synthetic route is as follows.

EXAMPLE 57 1-methyl-4-(5-nitro-3-thienyl)-4,9-dihydro-1H-isoxazolo[3,4-b]pyrano[4,3-e]pyridine-3,5(6H,8H)-dione The product from Example 45A (0.086 g, 0.75 mmol), nitro-3-thiophenecarbaldehyde (0.12 g, 0.75 mmol) and 2H-pyran-3,5(4H,6H)-dione (0.085 g, 0.75 mmol) in ethyl alcohol (2 mL) were heated at 80 C. for 2 days in a sealed tube. The reaction mixture was allowed to cool to ambient temperature and was evaporated under reduced pressure. The residue was crystallized from methylene chloride/ethanol to provide the title product. 1H NMR (300 MHz, DMSO-d6) delta 3.23 (s, 3H), 4.1 (q, 2H), 4.53 (s, 2H), 4.88 (s, 1H), 7.7 (d, 1H), 7.92 (d, 1H), 10.8 (s, 1H); MS (ESI) m/z 348 (M+H)-; Anal. Calcd for C14H11N3O6S: C, 48.13;H, 3.15; N, 12.03. Found: C, 47.76;H, 3.25; N, 11.78., 61363-56-2

As the paragraph descriping shows that 61363-56-2 is playing an increasingly important role.

Reference£º
Patent; Drizin, Irene; Altenbach, Robert J.; Carroll, William A.; US2002/7059; (2002); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 29943-42-8

29943-42-8 Dihydro-2H-pyran-4(3H)-one 121599, aTetrahydropyrans compound, is more and more widely used in various fields.

29943-42-8, Dihydro-2H-pyran-4(3H)-one is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

29943-42-8, A mixture of tetrahydro-4H-pyran-4-one (31.7mL, 0.34mol) and tert-butylcarbazate (47.7g, 0.36mol) in EtOH (50OmL) was stirred at ambient temperature overnight. The reaction mixture was evapotrated and the reisdue suspended in HOAc-H2O (1:1 / 50OmL). NaCNBH3 (22.64g,0.36mol) was added and the mixture was stirred at ambient temperature for 2.5hr. The reaction mixture was suspended in EtOAc-10% K2CO3 (2:1 / 75OmL). The organic layer was separated, washed with brine (2 x 40OmL) and dried (MgSO4). Filtration and evaporation of the solvent and trituration of the residue with hexane afforded the product as a white amorphous solid(47.5g, 64%). 1H NMR (CDCl3) 6.10 (IH, br s), 3.99-3.35 (5H, m), 3.06 (IH, m), 1.79-1.35(4H, m), 1.46 (9H, s)

29943-42-8 Dihydro-2H-pyran-4(3H)-one 121599, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; JAMES BLACK FOUNDATION; WO2007/135350; (2007); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 1228779-96-1

As the paragraph descriping shows that 1228779-96-1 is playing an increasingly important role.

1228779-96-1, 3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1228779-96-1

General procedure: To a solution of appropriate crude acid (1 eq) in CH2Cl2 wereadded EDCI (3 eq), DMAP (0.3 eq) and DIPEA (3 eq). The solutionwas stirred at room temperature for 0.5 h and compound 23 [7] (0.8eq) was added. The resulting mixture was stirred for another 8 hand water was added. The layers were separated, and the aqueouslayer was extracted with CH2Cl2. The combined organic layer waswashed with brine, dried over anhydrous Na2SO4, filtered, andconcentrated under vacuo. The residue was prified by chromatography(CH2Cl2/CH3OH 40:1) to provide target compounds 27a-i,28a-d and 34a-c.

As the paragraph descriping shows that 1228779-96-1 is playing an increasingly important role.

Reference£º
Article; Liu, Xiaohua; Zhang, Yu; Huang, Wenjing; Luo, Jia; Li, Yang; Tan, Wenfu; Zhang, Ao; European Journal of Medicinal Chemistry; vol. 159; (2018); p. 149 – 165;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics