With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5631-96-9,2-(2-Chloroethoxy)tetrahydro-2H-pyran,as a common compound, the synthetic route is as follows.
5631-96-9, NaH 60% suspension in mineral oil (6.659 g, equivalent to 3.995 g of NaH, 0.166 mol, 1 .2 eq) was weighed into a flame-dried flask and washed with hexanes (2 x 50 mL) under nitrogen atmosphere. Residual hexanes were allowed to evaporate under nitrogen flow before suspending the NaH in dry THF and cooling to 0 C. 1 (10.000 g, 0.139 mol) was dissolved in dry THF (20 mL) and dry DMF (30 mL) before adding dropwise over 30 minutes to the suspended NaH with stirring. The mixture was brought to rt before dropwise addition of 2-chloroethoxytetrahydro–?/-/- pyran (30.71 mL 0.208 mol 1 .5 eq) in dry THF (20 mL) over 30 minutes. The mixture was stirred at rt overnight before quenching with MeOH (20 mL). All solvents were removed before dissolving the residue in Et20 (200 mL) and washing with water (2 x 150 mL) and brine (150 mL). After removal of solvent, the resulting crude oil was purified by flash column chromatography (eluent DCM) to give 5.878 g colourless oil.
5631-96-9 2-(2-Chloroethoxy)tetrahydro-2H-pyran 254951, aTetrahydropyrans compound, is more and more widely used in various fields.
Reference£º
Patent; THE UNIVERSITY OF NOTTINGHAM; MISTRY, Shailesh; DARAS, Etienne; FROMONT, Christophe; JADHAV, Gopal; FISCHER, Peter Martin; KELLAM, Barrie; HILL, Stephen John; BAKER, Jillian Glenda; WO2012/4549; (2012); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics