New explortion of 4-Methylphenyl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Safety of 4-Methylphenyl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside. In my other articles, you can also check out more blogs about 28244-94-2

28244-94-2, Name is 4-Methylphenyl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside, molecular formula is C21H26O9S, belongs to tetrahydropyran compound, is a common compound. In a patnet, once mentioned the new application about 28244-94-2, Safety of 4-Methylphenyl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside

Synthesis of beta-Glycosyl amides from N-glycosyl dinitrobenzenesulfonamides

The N-glycosyl-2,4-dinitrobenzenesulfonamides were accessed via benzoyl-protected beta-glycosyl azides. The azides were reduced with Adams’ catalyst to the corresponding amines. The glycosylamines were sulfonated with 2,4-dinitrobenzenesulfonyl chloride to form N-glycosyl-2,4- dinitrobenzenesulfonamides in moderate yields. beta-Glycosyl amides were then prepared in 67% to 81% yields by treatment of the sulfonamides with thioacetic acid and cesium carbonate. The conversion of the glycosylsulfonamide to the glycosyl amide proceeded with high stereoselectivity. Copyright Taylor & Francis Group, LLC.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Safety of 4-Methylphenyl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside. In my other articles, you can also check out more blogs about 28244-94-2

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Archives for Chemistry Experiments of 499-40-1

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.category: Tetrahydropyrans, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 499-40-1, in my other articles.

A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 499-40-1, Name is (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal, molecular formula is C12H22O11. In a Article,once mentioned of 499-40-1, category: Tetrahydropyrans

Cobalt(ii) complexes with the quinolone antimicrobial drug oxolinic acid: Structure and biological perspectives

The interaction of cobalt(ii) with the quinolone antimicrobial agent oxolinic acid (Hoxo) in the absence or presence of the Lewis bases 2,2?-bipyridine (bipy), 2,2?-bipyridylamine (bipyam), 1,10-phenanthroline (phen), pyridine (py) or 4-benzylpyridine (4bzpy) resulted in the formation of a series of mononuclear complexes which were characterized with physicochemical and spectroscopic techniques. The crystal structure of [Co(oxo)2(bipy)]·3MeOH was determined by X-ray crystallography. The interaction of the complexes with calf-thymus DNA (CT DNA) was investigated by UV spectroscopy, viscosity measurements and cyclic voltammetry in order to evaluate the possible DNA-binding mode and to calculate the corresponding DNA-binding constants. The binding of the complexes to human or bovine serum albumin was monitored by fluorescence emission spectroscopy and relatively high binding constant values were determined. The antimicrobial activity of the complexes was tested against four different microorganisms (Escherichia coli, Xanthomonas campestris, Staphylococcus aureus and Bacillus subtilis) and was found to be similar to that of free Hoxo. Molecular docking simulations on the crystal structure of CT DNA, HSA and BSA were employed in order to study in silico the ability of the resultant complexes to bind biomacromolecules. This is the first report for metal-quinolone complexes combining experimental data and molecular docking simulations of their interaction with DNA and serum albumins.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.category: Tetrahydropyrans, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 499-40-1, in my other articles.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

A new application about 14215-68-0

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.HPLC of Formula: C8H15NO6, you can also check out more blogs about14215-68-0

The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.14215-68-0, Name is N-((2S,3R,4R,5R,6R)-2,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide, molecular formula is C8H15NO6. In a Article,once mentioned of 14215-68-0, HPLC of Formula: C8H15NO6

Synthesis and antibacterial activity of doxycycline neoglycosides

A set of 37 doxycycline neoglycosides were prepared, mediated via a C-9 alkoxyamino-glycyl-based spacer reminiscent of that of tigecycline. Subsequent in vitro antibacterial assays against representative drug-resistant Gram negative and Gram positive strains revealed a sugar-dependent activity profile and one doxycycline neoglycoside, the 2?-amino-alpha-d-glucoside conjugate, to rival that of the parent pharmacophore. In contrast, the representative tetracycline-susceptible strain E. coli 25922 was found to be relatively responsive to a range of doxycycline neoglycosides. This study also extends the use of aminosugars in the context of neoglycosylation via a simple two-step strategy anticipated to be broadly applicable for neoglycorandomization.

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.HPLC of Formula: C8H15NO6, you can also check out more blogs about14215-68-0

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Extracurricular laboratory:new discovery of 499-40-1

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.Application In Synthesis of (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 499-40-1, in my other articles.

A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 499-40-1, Name is (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal, molecular formula is C12H22O11. In a Article,once mentioned of 499-40-1, Application In Synthesis of (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal

Dinuclear triply bridged copper(II)-carboxylato compounds with different bischelating ligands: Synthesis, crystal structure, spectroscopic and magnetic properties

Three new triply bridged dinuclear copper(II) compounds containing carboxylato bridges, [Cu2(mu-CH3COO-kappa-O1,O2)2(mu-CH3COO-kappa-O1)(dpyam)2](BF4) (1), [Cu2(mu-CH2CH3COO-kappa-O1,O2)(mu-OH)(mu-OH2)(bpy)2](ClO4)2 (2) and [Cu2(mu-CH3COO-kappa-O1,O2)(mu-OH)(mu-OH2)(phen)2](ClO4)2 (3) (in which dpyam = di-2-pyridylamine, bpy = 2,2-bipyridine, phen = phenanthroline), have been synthesized in order to investigate the magnetic super-exchange pathway between coupled copper(II) centres. All three compounds display a distorted square-pyramidal arrangement around each copper(II) ion with a CuN2O3 chromophore. Compound 1 has three acetato bridges, two of which connect each square pyramid at two equatorial sites in a triatomic bridging mode and the third acetato bridge acts at the apical site in the monoatomic bridging mode. The structures of compounds 2 and 3 are mutually similar. In each dinuclear unit, both copper(II) ions are linked at two equatorial positions through a hydroxo bridge and a triatomic carboxylato bridge and at the axial position through a water molecule. The magnetic susceptibility measurements, measured from 5 to 300 K, revealed an antiferromagnetic interaction between the Cu(II) ions in compound 1 and a ferromagnetic interaction for compounds 2 and 3 with singlet-triplet energy gaps (J) of -56, 149 and 120 cm-1, for compounds 1, 2 and 3, respectively.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.Application In Synthesis of (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 499-40-1, in my other articles.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Some scientific research about N-((2S,3R,4R,5R,6R)-2,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Safety of N-((2S,3R,4R,5R,6R)-2,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide. In my other articles, you can also check out more blogs about 14215-68-0

A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 14215-68-0, Name is N-((2S,3R,4R,5R,6R)-2,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide, molecular formula is C8H15NO6. In a Article,once mentioned of 14215-68-0, Safety of N-((2S,3R,4R,5R,6R)-2,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide

Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid

The kinetics of hydrolysis in concentrated hydrochloric acid (12.07 M) of the fully N-acetylated chitin tetramer (GlcNAc4) and the fully N-deacetylated chitosan tetramer (GlcN4) were followed by determining the amounts of the lower DP oligomers as a function of time. A theoretical model was developed to simulate the kinetics of hydrolysis of the three different glycosidic linkages in the tetramers. The model uses two different rate constants for the hydrolysis of the glycosidic bonds in the oligomers, assuming that the glycosidic bond next to one of the end residues are hydrolysed faster than the two other glycosidic linkages. The two rate constants were estimated by fitting model data to experimental results. The results show that the hydrolysis of the tetramers is a nonrandom process as the glycosidic bonds next to one of the end residues are hydrolysed 2.5 and 2.0 times faster as compared to the other glycosidic linkages in the fully N-acetylated and fully N-deacetylated tetramer, respectively. From previous results on other oligomers and the reaction mechanism, it is likely that the glycosidic bond that is hydrolysed fastest is the one next to the nonreducing end. The absolute values for the rate constants for the hydrolysis of the glycosidic linkages in GlcNAc4 were found to be 50 times higher as compared to the glycosidic linkages in GlcN4, due to the catalytic role of the N-acetyl group and the presence of the positively charged amino-group on the N-deacetylated sugar residue.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Safety of N-((2S,3R,4R,5R,6R)-2,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide. In my other articles, you can also check out more blogs about 14215-68-0

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

A new application about 499-40-1

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.category: Tetrahydropyrans, you can also check out more blogs about499-40-1

The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.499-40-1, Name is (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal, molecular formula is C12H22O11. In a Article,once mentioned of 499-40-1, category: Tetrahydropyrans

Synthesis, structure, spectroscopy, and magnetism of two new dinuclear carbonato-bridged Cu(II) complexes

Two new dinuclear mu-CO32- Cu(II) complexes with different coordination modes for the carbonato bridge have been obtained by fixation of atmospheric CO2 and also directly prepared from the carbonate salt. The compounds comprise: [Cu2(mu-CO3)(dpyam)4](ClO4) 2(H2O)4 (1), and [Cu2(mu-CO3)2(dpyam)2](H 2O) (2), (in which dpyam = di-2-pyridylamine). For 1, the carbonate ligand acts as a bridge between two Cu(II) centres showing an anti-anti (mu-eta1-eta1-CO32-) coordination mode with a distorted square-based pyramidal geometry for each Cu(II) environment. Complex 2 involves the di-mu-CO32- bridge with a novel tridentate mu-eta1-eta2-CO32- coordination mode. The geometry around each copper atom is distorted square-based pyramidal. Susceptibility measurements for both complexes show a weak to moderately strong antiferromagnetic coupling with J values of -90.4 and -9.9 cm-1 for 1 and 2, respectively. The tridentate co-ordination mode of the carbonate bridge in 2 has not previously been reported for dinuclear Cu(II) complexes. Also its magnetic behaviour and superexchange pathway are discussed.

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.category: Tetrahydropyrans, you can also check out more blogs about499-40-1

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Can You Really Do Chemisty Experiments About 499-40-1

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Formula: C12H22O11. In my other articles, you can also check out more blogs about 499-40-1

499-40-1, Name is (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal, molecular formula is C12H22O11, belongs to tetrahydropyran compound, is a common compound. In a patnet, once mentioned the new application about 499-40-1, Formula: C12H22O11

Resolution, structures, and vibrational circular dichroism of helicoidal trinickel and tricobalt paddlewheel complexes

It has been recently shown that enantiomers of the helicoidal paddlewheel complex [Co3(dpa)4(CH3CN)2]2+ (dpa = the anion of 2,2?-dipyridylamine) can be resolved using the chiral [As2(tartrate)2]2? anion (AsT) and that these complexes demonstrate a strong chiroptical response in the ultraviolet-visible and X-ray energy regions. Here we report that the nickel congener, [Ni3(dpa)4(CH3CN)2]2+, can likewise be resolved using AsT. Depending on the stereochemistry of the enantiopure AsT anion, one or the other of the trinickel enantiomers crystallize from CH3CN and diethyl ether in space group P4212 as the (NBu4)2[Ni3(dpa)4(CH3CN)2](AsT)2·[solvent] salt. After resolution, the AsT salts were converted into the PF6 ? salts by anion exchange, with retention of the chirality of the trinickel complex. The enantiopure [Ni3(dpa)4(CH3CN)2](PF6)2·2CH3CN and [Co3(dpa)4(CH3CN)2](PF6)2·CH3CN·C4H10O compounds crystallize in space groups C2 and P21, respectively. Both the Ni(II) and Co(II) complex cations are stable towards racemization in CH3CN. Vibrational circular dichroism (VCD) data obtained in CD3CN demonstrate the expected mirror image spectra for the enantiomers, the observed peaks arising from the dpa ligand. The VCD response is significant, with Deltaepsilon values up to 6 Lmol?1 cm?1 and vibrational dissymmetry factors on the order of 10?3. Density functional theory calculations well reproduce the experimental spectra, showing little difference between the peak position, sign, and intensity in the VCD for the cobalt and nickel complexes. These results suggest that VCD enhancement of these peaks is unlikely, and their remarkable intensity may be due to their rigid helicoidal structure.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Formula: C12H22O11. In my other articles, you can also check out more blogs about 499-40-1

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

New explortion of 5631-96-9

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.Safety of 2-(2-Chloroethoxy)tetrahydro-2H-pyran, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 5631-96-9, in my other articles.

A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 5631-96-9, Name is 2-(2-Chloroethoxy)tetrahydro-2H-pyran, molecular formula is C7H13ClO2. In a Article,once mentioned of 5631-96-9, Safety of 2-(2-Chloroethoxy)tetrahydro-2H-pyran

Asymmetric Reduction with C1- and C2-Symmetric NADH Model Cpmpounds Containing Chiral 1,1′-Binaphthyls

The present study deals with Mg-catalyzed asymmetric reduction of ethyl benzoylformate by the use of C2-symmetric NADH model compounds in which axial dissymmetry(chiral 1,1′-binaphthyl derivatives) was introduced as a chiral source for the first time and the results were compared with those obtained by the corresponding C1-symmetric models bearing the same chiral center.Better e.e.’s of the reduction product were obtained by the use of NADH models having C2-symmetry than does the corresponding C1-symmetric ones.Further, the kind of bonding as well as the distance between chiral binaphthyl and the reaction center affected the stereochemical course of hydrogen transfer.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.Safety of 2-(2-Chloroethoxy)tetrahydro-2H-pyran, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 5631-96-9, in my other articles.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Discovery of 74808-09-6

If you are hungry for even more, make sure to check my other article about 74808-09-6. Reference of 74808-09-6

Reference of 74808-09-6, Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn’t involve a screen. 74808-09-6, C36H36Cl3NO6. A document type is Article, introducing its new discovery.

Glycosylidene carbenes. Part 14. Glycosidation of partially protected galactopyranose-, glucopyranose-, and mannopyranose-derived vicinal diols

The relation between H-bonding in diequatorial trans-1,2 and axial,equatorial cis-1,2-diols and the regioselectivity of glycosidation by the diazirine 1 was examined. H-Bonds were assigned on the basis of FT-IR and 1H-NMR spectra (Fig. 1). Glycosidation by 1 of the gluco-configurated diequatorial trans-2,3-diols 4-7 yielded the mono-glucosylated products 16/17/20/21 (69-89%); 1,2-/1,3-linked products 37-46:63-54), 24/25/28/29 (60-63%; 1,2-/1,3,-linked products 46-51:54-49), 32-35 (69-94%; 1,2-/1,3-linked products 45-52:55-48), and 36/37/40/41 (59-63%; 1,2-/1,3-linked products 52-59:48-41), respectively (Scheme 1, Table 3). The disaccharides derived from 4, 5, and 7 were characterized as their acetates 18/19/22/23, 26/27/30/31, and 38/39/42/43, respectively. Glycosidation of the galacto-configurated diequatorial 2,3-diols 8 and 9 and the manno-configurated diequatorial 3,4-diol 10 by 1 (Scheme 2, Table 3) also proceeded in fair yields to give the disaccharides 44-47 (69-80%; 1,2-/1,3-linked products ca. 1:1), 48-51 (51-61%; 1,2-/1,3-linked products 54-56:56-54), and 56/57/60/61 (71-80%; 1,3-/1,4-linked products 49-54:51-46), respectively. The 1,3-linked disaccharides 56/57 derived from the diol 10 were characterized as the acetates 58/59. The regio- and stereoselectivities of the glycosidation by 1 were much better for the alpha-D-manno-configurated axial,equatorial cis-2,3-diol 11 and the galacto-configurated axial, equatorial cis-3,4-diol 13 (1,2-/1,3-linked disaccharides ca. 3:7 for 11 and 1,3,-/1,4-linked disaccharides ca. 4:1 for 13; Scheme 3, Table 4). The regio- and stereoselectivity for the beta-D-manno-configurated cis-2,3-diol 12 were, however, rather poor (1,2-/1,3-linked products 48:52). The 1,2-linked disaccharides 66/67 derived from 12 were characterized as the acetates 70/71. Koenigs-Knorr-type glycosidation of the cis-diols 11-13 by 2 or 3 proceeded with a similar regio- and a higher stereoselectivity (alpha-D > beta-D with the donor 2 and alpha-D < beta-D with the donor 3) than with 1, with the exception of 12 which did not react with 2. The regioselectivity of the glycosidations by 1 agrees fully with the H-bonding scheme of the diols and with the hypothesis that the intermediate carbene is preferentially protonated by the most weakly H-bonded OH group. The regioselectivity of the glycosidation by 2 and by 3 is determined by a higher reactivity of the equatorial OH groups and by H-bonding. Several H-bonded and equilibrating isomers of a given diol may intervene in the glycosidation by 1, or 2 and 3, resulting in the same regioselectivity. The low nucleophilicity of 12 and the low degree of regioselectivity in its reaction with 3 show that stereoelectronic effects may also profoundly influence the nucleophilicity of OH groups. If you are hungry for even more, make sure to check my other article about 74808-09-6. Reference of 74808-09-6

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Can You Really Do Chemisty Experiments About (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Formula: C12H22O11, you can also check out more blogs about499-40-1

The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.499-40-1, Name is (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal, molecular formula is C12H22O11. In a Article,once mentioned of 499-40-1, Formula: C12H22O11

Effects of metal ions and ligands on transesterification: Synthesis, structures, and catalytic activities of a series of cation-anionic complexes with dipyridylamine ligands

A series of cation-anion complexes derived by 2,2?-dipyridylamine (Hdpa) and carboxylate ligands with formulas [Ni(Hdpa)2(CH 3COO)]Cl(CH3OH) (1), [Co(Hdpa)2(CH 3COO)]Cl(CH3OH) (2), [Ni(Hdpa)2(CH 3CH2CH2COO)]Cl (3), [Co(Hdpa) 2(CH3CH2CH2COO)]Cl (4), [Ni(Hdpa)2(C6H5COO)]Cl (5), and [Co(Hdpa) 2(C6H5COO)]Cl (6), were synthesized and characterized by IR, elemental analysis, MS(ESI), TG analysis, UV-Vis, and fluorescence spectra. X-ray single crystal structural analysis showed that the coordination geometries of metal ions in these complexes are similar and they are cation-anion species. The hydrogen-bonding structures are 1-D chains through the N-H…Cl bonds. There are weak stacking interactions between pyridine rings in 1-4, while there are no stacking interactions in 5 and 6. We have investigated the transesterification of phenyl acetate with methanol catalyzed by 1-6 under mild conditions; 1-4 are homogeneous catalysts while 5 and 6 are heterogeneous catalysts due to their poor solubility in methanol. Cobalt complexes exhibit higher catalytic activities than corresponding nickel complexes. Complex 4 is the best catalyst of these six complexes.

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Formula: C12H22O11, you can also check out more blogs about499-40-1

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics