Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction by binding to a specific portion of an enzyme. Irreversible inhibitors are therefore the equivalent of poisons in heterogeneous catalysis. 499-40-1, C12H22O11. A document type is Article, introducing its new discovery., Recommanded Product: 499-40-1
An unprecedented solid of coper(II) complexes, [Cu(dpa)2NCS]2[Cu(dpa)2(NCS)2](ClO4)2 (1) [dpa = 2,2?-dipyridylamine; SCN = thiocyanate], has been synthesized and crystallographically characterized with the aim to study the catecholase activity. The Cu(II) complex mimics the full catalytic cycle of the active site of catechol oxidase enzyme in acetonitrile medium with a turnover number of 4.788×103 h ?1 along with the production of semiquinone radical and hydrogen peroxide. In situ generation of Cu(I) species in the catalytic pathway of catechol oxidation was established by electrochemical study and further confirmed by electron paramagnetic resonance (EPR) spectroscopy. [Figure not available: see fulltext.]
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Recommanded Product: 499-40-1. In my other articles, you can also check out more blogs about 499-40-1
Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics