Product Details of 97739-46-3. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 1,3,5,7-Tetramethyl-6-phenyl-2,4,8-trioxa-6-phosphaadamantane, is researched, Molecular C16H21O3P, CAS is 97739-46-3, about Sterically Encumbered and Poorly Electron-Donating Oxaphosphaadamantane Ligands for the Pd-Catalyzed Telomerization of Butadiene with Methanol. Author is Klinkenberg, Jessica L.; Lawry, Kevin P..
Oxaphosphaadamantane ligands bearing a variety of aryl and alkyl substituents were synthesized as catalyst promoters in the Pd-catalyzed telomerization of butadiene with methanol. At high methanol concentrations (14 M), ligands with electron-donating substituents on the aryl ring generate catalysts that lead to some of the highest conversions of butadiene and selectivities for 1-methoxy-2,7-octadiene under the conditions tested. Specifically, the ligand 1,3,5,7-tetramethyl-6-(2-methoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane, when combined with a Pd(II) precursor, forms a catalyst that converts 96% of butadiene with 94% selectivity for 1-methoxy-2,7-octadiene at 70 °C and is highly active for telomerization at a low reaction temperature (40 °C).
There is still a lot of research devoted to this compound(SMILES:CC1(C2)OC(C3)(C)OC2(C)OC3(C)P1C4=CC=CC=C4)Product Details of 97739-46-3, and with the development of science, more effects of this compound(97739-46-3) can be discovered.
Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics