In addition to the literature in the link below, there is a lot of literature about this compound(1-Bromo-2-pentyne)Computed Properties of C5H7Br, illustrating the importance and wide applicability of this compound(16400-32-1).
Computed Properties of C5H7Br. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 1-Bromo-2-pentyne, is researched, Molecular C5H7Br, CAS is 16400-32-1, about Visible-Light-Induced Radical Carbo-Cyclization/gem-Diborylation through Triplet Energy Transfer between a Gold Catalyst and Aryl Iodides. Author is Zhang, Lumin; Si, Xiaojia; Rominger, Frank; Hashmi, A. Stephen K..
Gem-Diboronates I (X = O, S, NBoc; R1 = H, halo, MeCO, MeO2C, tBu, CF3, MeSO2NH; R2 = H, Me, Et; R3 = H, Me, iPr, Bu) were prepared by photochem. diboration of propargylic substrates 2-I-R1C6H3XCHR3CCR2 with B2pin2 catalyzed by gold complex [Au2(μ-dppm)2(OTf)2] with up to 90% yields. Geminal diboronates have attracted significant attention because of their unique structures and reactivity. However, benzofuran-, indole- and benzothiophene-based benzylic gem-diboronates, building blocks for biol. relevant compounds, are unknown. A promising protocol using visible light and aryl iodides for constructing valuable building blocks, including benzofuran-, indole- and benzothiophene-based benzylic gem-diboronates, via radical carbo-cyclization/gem-diborylation of alkynes with a high functional group tolerance is presented. The utility of these gem-diboronates has been demonstrated by a ten gram scale conversion, by versatile transformations, by including the synthesis of approved drug scaffolds and two approved drugs, and even by polymer synthesis. The mechanistic investigation indicates that the merging of the dinuclear gold catalyst (photoexcitation by 315-400 nm UVA light) with Na2CO3 is directly responsible for photosensitization of aryl iodides (photoexcitation by 254 nm UV light) with blue LEDs light (410-490 nm, λmax = 465 nm) through an energy transfer (EnT) process, followed by homolytic cleavage of the C-I bond in the aryl iodide substrates.
In addition to the literature in the link below, there is a lot of literature about this compound(1-Bromo-2-pentyne)Computed Properties of C5H7Br, illustrating the importance and wide applicability of this compound(16400-32-1).
Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics