Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 1,3,5,7-Tetramethyl-6-phenyl-2,4,8-trioxa-6-phosphaadamantane, is researched, Molecular C16H21O3P, CAS is 97739-46-3, about Highly regioselective rhodium-catalyzed hydroformylation of unsaturated esters: The first practical method for quaternary selective carbonylation.Synthetic Route of C16H21O3P.
Highly regioselective hydroformylation of unsaturated esters can be achieved when a highly reactive, ligand-modified, rhodium catalyst is employed near ambient temperatures (15-50°C) and pressures over 30 bar. The use of 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phosphaadamantane shows distinct advantages over other commonly applied phosphanes in terms of reaction rate, and regio- and chemoselectivity. Hydroformylation of a range 1,1-di-, and 1,1,2-trisubstituted unsaturated esters yields quaternary aldehydes that are forbidden products according to Keulemans Rule. The aldehydes can be reductively aminated with mol. hydrogen to give β-amino acid esters in high yield. The overall green chem. process involves converting terminal alkynes into unusual β-amino acid esters with only water generated as an essential byproduct. This catalytic system has also been applied to the hydroformylation of simple 1,2-disubstituted unsaturated esters, which were hydroformylated with excellent α-selectivity and good chemoselectivity.
Compounds in my other articles are similar to this one(1,3,5,7-Tetramethyl-6-phenyl-2,4,8-trioxa-6-phosphaadamantane)Synthetic Route of C16H21O3P, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.
Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics