Research on new synthetic routes about 16400-32-1

Although many compounds look similar to this compound(16400-32-1)Product Details of 16400-32-1, numerous studies have shown that this compound(SMILES:CCC#CCBr), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 1-Bromo-2-pentyne( cas:16400-32-1 ) is researched.Product Details of 16400-32-1.Shen, Wen-Bo; Zhang, Ting-Ting; Zhang, Meng; Wu, Jing-Jing; Jiang, Xiao-Lei; Ru, Guang-Xin; Gao, Guang-Qin; Zhu, Xiu-Hong published the article 《Cu(I)- and Au(I)-catalyzed regioselective oxidation of diynes: divergent synthesis of N-heterocycles》 about this compound( cas:16400-32-1 ) in Organic Chemistry Frontiers. Keywords: pyrrole preparation regioselective; dihydroindenopyrrolone preparation regioselective; amide tethered diyne oxidative cyclization copper gold catalyst. Let’s learn more about this compound (cas:16400-32-1).

Catalyst-dependent oxidative cyclization of diynes 2-NH(C(O)R4)-4-R3C6H3CCCH2N(R2)CC(R1) [R1 = Ph, 2-phenylethenyl, thiophen-3-yl, etc.; R2 = Ts, Bs, Ms, benzenesulfonyl; R3 = H, Me, Cl, Br; R4 =Me, Ac, Bz, 4-fluorophenyl, etc.]/(R2)N(CH2CCR5)CCAr [R5 = Me, Et, pentyl, 3-phenylpropyl; Ar = Ph, 4-(trifluoromethyl)phenyl, 3,5-dichlorophenyl, etc.] with 3,5-dichloropyridine N-oxide is achieved using an amide directing group. Non-polarized and aminated alkyne could be selectively activated by copper and gold, thus leading to divergent synthesis of a range of pyrroles I and dihydroindeno[1,2-c]pyrrol-3(2H)-ones II (R6 = H, Cl, Me; R7 = H, Me, F, CF3, etc.; R8 = H, Cl, Me, etc.). It should be noted that this difference might be attributed to the multicoordinated Cu center and the linearly aligned dicoordinated Au center.

Although many compounds look similar to this compound(16400-32-1)Product Details of 16400-32-1, numerous studies have shown that this compound(SMILES:CCC#CCBr), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics