Synthetic Route of C5H9BrOIn 2019 ,《Discovery of novel, potent, isosteviol-based antithrombotic agents》 appeared in European Journal of Medicinal Chemistry. The author of the article were Chen, Peng; Zhang, Dianwen; Li, Meng; Wu, Qiong; Lam, Yuko P. Y.; Guo, Yan; Chen, Chen; Bai, Nan; Malhotra, Shipra; Li, Wei; O’Connor, Peter B.; Fu, Hongzheng. The article conveys some information:
Thrombosis is a pathol. coagulation process and can lead to many serious thrombotic diseases. Here, we report a novel potent antithrombotic compound (6k) based on isosteviol with anticoagulant and antiplatelet activities. 6k selectively inhibited FXa (Ki = 0.015μM) against a panel of serine proteases and showed excellent anticoagulant activity (significant prolongation of ex vivo PT and aPTT over the vehicle, p < 0.01). 6k also significantly inhibited ADP-induced platelet aggregation in rats relative to the vehicle (p < 0.01). Furthermore, 6k exhibited potent ex vivo and in vivo antithrombotic activity in rats relative to the vehicle (p < 0.01 and p < 0.0001, resp.). Novel structure 6k, with potent antithrombotic activity, is expected to lead a promising approach for the development of antithrombotic agents. The experimental part of the paper was very detailed, including the reaction process of 4-Bromotetrahydropyran(cas: 25637-16-5Synthetic Route of C5H9BrO)
4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: preparation of anthranilic acids as antibacterial agents with human serum albumin binding affinity; preparation of antiatherogenic antioxidant di-tert-butyldihydrobenzofuranols via Grignard reactions with di-tert-butyl(hydroxy)benzaldehyde derivatives; synthesis of gephyrotoxin via the Schmidt reaction.Synthetic Route of C5H9BrO
Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics