Wei, Xiao-Jing’s team published research in Angewandte Chemie, International Edition in 2019 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Safety of 4-Bromotetrahydropyran

The author of 《Visible-Light-Promoted Iron-Catalyzed C(sp2)-C(sp3) Kumada Cross-Coupling in Flow》 were Wei, Xiao-Jing; Abdiaj, Irini; Sambiagio, Carlo; Li, Chenfei; Zysman-Colman, Eli; Alcazar, Jesus; Noel, Timothy. And the article was published in Angewandte Chemie, International Edition in 2019. Safety of 4-Bromotetrahydropyran The author mentioned the following in the article:

A continuous-flow, visible-light-promoted method has been developed to overcome the limitations of iron-catalyzed Kumada-Corriu cross-coupling reactions. A variety of strongly electron rich aryl chlorides, previously hardly reactive, could be efficiently coupled with aliphatic Grignard reagents at room temperature in high yields and within a few minutes’ residence time, considerably enhancing the applicability of this iron-catalyzed reaction. The robustness of this protocol was demonstrated on a multigram scale, thus providing the potential for future pharmaceutical application. The mechanism was studied using radical clock experiments, kinetic measurements, DFT and other techniques. The results came from multiple reactions, including the reaction of 4-Bromotetrahydropyran(cas: 25637-16-5Safety of 4-Bromotetrahydropyran)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Safety of 4-Bromotetrahydropyran

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Perkins, James J.’s team published research in European Journal of Organic Chemistry in 2020 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Category: tetrahydropyran

《Photoredox Catalysis for Silyl-Mediated C-H Alkylation of Heterocycles with Non-Activated Alkyl Bromides》 was published in European Journal of Organic Chemistry in 2020. These research results belong to Perkins, James J.; Schubert, Jeffrey W.; Streckfuss, Eric C.; Balsells, Jaume; ElMarrouni, Abdellatif. Category: tetrahydropyran The article mentions the following:

The development of a Minisci reaction of electron-deficient heteroarenes with non-activated alkyl bromides under visible-light photoredox catalysis is disclosed. Optimization of the reaction led to identification of mild, general, and practical reaction conditions compatible with sensitive functional groups. The scope of this transformation allowed late-stage functionalization of pharmaceutical products containing electron-deficient heteroarenes in a parallel fashion. The experimental process involved the reaction of 4-Bromotetrahydropyran(cas: 25637-16-5Category: tetrahydropyran)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Category: tetrahydropyran

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Brauns, Marcus’s team published research in Angewandte Chemie, International Edition in 2019 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Formula: C5H9BrO

Formula: C5H9BrOIn 2019 ,《Efficient Kinetic Resolution of Sulfur-Stereogenic Sulfoximines by Exploiting CpXRhIII-Catalyzed C-H Functionalization》 was published in Angewandte Chemie, International Edition. The article was written by Brauns, Marcus; Cramer, Nicolai. The article contains the following contents:

In the presence of a nonracemic cyclopentacyclooctadinaphthalene rhodium complex and N-phthalimido-L-phenylalanine, racemic aryl sulfoximines underwent kinetic resolution by C-H activation and cyclocondensation reactions with diazo compounds such as MeCOC(:N2)CO2Et in MeOH to yield nonracemic sulfoximines such as I and nonracemic benzothiazinones such as II. The method was used for the formal syntheses of two kinase inhibitors. After reading the article, we found that the author used 4-Bromotetrahydropyran(cas: 25637-16-5Formula: C5H9BrO)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Formula: C5H9BrO

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Wang, Chengpeng’s team published research in Journal of the American Chemical Society in 2018 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Related Products of 25637-16-5

In 2018,Wang, Chengpeng; Dong, Guangbin published 《Direct β-Alkylation of Ketones and Aldehydes via Pd-Catalyzed Redox Cascade》.Journal of the American Chemical Society published the findings.Related Products of 25637-16-5 The information in the text is summarized as follows:

We report a direct β-alkylation of ketones and aldehydes with simple alkyl bromides through a Pd-catalyzed redox-cascade strategy. The use of a Cu cocatalyst is important for improved efficiency. The reaction is redox-neutral, without the need for strong acids or bases. Both cyclic and acyclic ketones, as well as α-branched aldehydes, are suitable substrates for coupling with secondary and tertiary alkyl bromides. Concise formal synthesis of Zanapezil is achieved using this β-alkylation method. In the part of experimental materials, we found many familiar compounds, such as 4-Bromotetrahydropyran(cas: 25637-16-5Related Products of 25637-16-5)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Related Products of 25637-16-5

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Debrouwer, Wouter’s team published research in Organic Process Research & Development in 2020 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Quality Control of 4-Bromotetrahydropyran

《Ir/Ni photoredox dual catalysis with heterogeneous base enabled by an oscillatory plug flow photoreactor》 was written by Debrouwer, Wouter; Kimpe, Wim; Dangreau, Ruben; Huvaere, Kevin; Gemoets, Hannes P. L.; Mottaghi, Milad; Kuhn, Simon; Van Aken, Koen. Quality Control of 4-Bromotetrahydropyran And the article was included in Organic Process Research & Development in 2020. The article conveys some information:

Continuous flow reactor technol. has a proven track record in enabling photochem. transformations. However, transfer of a photochem. batch process to a flow protocol often remains elusive, especially when solid reagents or catalysts are employed. In this work, application of an oscillatory plug flow photoreactor enabled a heterogeneous MacMillan-type C(sp2)-C(sp3) cross-electrophile coupling. Combination of an oscillatory flow regime with static mixing elements imparts exquisite control over the mixing intensity and residence time distribution, pinpointing a mindset shift concerning slurry handling in continuous flow reactors. The C(sp2)-C(sp3) cross-electrophile coupling was successfully transferred from batch to flow, resulting in an intensified slurry process with significantly reduced reaction time and increased productivity (0.87 g/h). After reading the article, we found that the author used 4-Bromotetrahydropyran(cas: 25637-16-5Quality Control of 4-Bromotetrahydropyran)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Quality Control of 4-Bromotetrahydropyran

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Kancherla, Rajesh’s team published research in Angewandte Chemie, International Edition in 2019 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Formula: C5H9BrO

The author of 《Oxidative Addition to Palladium(0) Made Easy through Photoexcited-State Metal Catalysis: Experiment and Computation》 were Kancherla, Rajesh; Muralirajan, Krishnamoorthy; Maity, Bholanath; Zhu, Chen; Krach, Patricia E.; Cavallo, Luigi; Rueping, Magnus. And the article was published in Angewandte Chemie, International Edition in 2019. Formula: C5H9BrO The author mentioned the following in the article:

Visible-light induced, palladium catalyzed alkylations of α,β-unsaturated acids with unactivated alkyl bromides are described. A variety of primary, secondary, and tertiary alkyl bromides are activated by the photoexcited palladium metal catalyst to provide a series of olefins at room temperature under mild reaction conditions. Mechanistic studies and d. functional theory (DFT) studies suggest that a photoinduced inner-sphere mechanism is operative in which a barrierless, single-electron transfer oxidative addition of the alkyl halide to Pd0 is key for the efficient transformation.4-Bromotetrahydropyran(cas: 25637-16-5Formula: C5H9BrO) was used in this study.

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Formula: C5H9BrO

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Turro, Raymond F.’s team published research in Angewandte Chemie, International Edition in 2022 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Computed Properties of C5H9BrO

In 2022,Turro, Raymond F.; Brandstatter, Marco; Reisman, Sarah E. published an article in Angewandte Chemie, International Edition. The title of the article was 《Nickel-Catalyzed Reductive Alkylation of Heteroaryl Imines》.Computed Properties of C5H9BrO The author mentioned the following in the article:

The preparation of heterobenzylic amines, e.g., I [R1 = H, 4-Cl, 5-F, 6-Me, etc.; R2 = i-Pr, n-Bu, t-Bu, cyclopropyl, cyclobutyl, (R)-PhCHMe; R3 = H, Me, R4 = PhCH2; R3 = H, R4 = 4-ClC6H4CH2, 2,6-Me2C6H3CH2, etc.; R3R4 = (CH2)2X(CH2)2; X = CH2, O, CO, NBoc], by a Ni-catalyzed reductive cross-coupling between heteroaryl imines, e.g., II, and C(sp3) electrophiles R3R4CHX1 (X1 = Cl, Br, I, phthalimidyloxycarbonyl) is reported. This umpolung-type alkylation proceeds under mild conditions, avoids the pre-generation of organometallic reagents, and exhibits good functional group tolerance. Mechanistic studies are consistent with the imine substrate acting as a redox-active ligand upon coordination to a low-valent Ni center. The resulting bis(2-imino)heterocycle·Ni complexes can engage in alkylation reactions with a variety of C(sp3) electrophiles, giving heterobenzylic amine products in good yields. After reading the article, we found that the author used 4-Bromotetrahydropyran(cas: 25637-16-5Computed Properties of C5H9BrO)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Computed Properties of C5H9BrO

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Pomberger, Alexander’s team published research in Organic Process Research & Development in 2019 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: preparation of anthranilic acids as antibacterial agents with human serum albumin binding affinity; preparation of antiatherogenic antioxidant di-tert-butyldihydrobenzofuranols via Grignard reactions with di-tert-butyl(hydroxy)benzaldehyde derivatives; synthesis of gephyrotoxin via the Schmidt reaction.Recommanded Product: 4-Bromotetrahydropyran

In 2019,Organic Process Research & Development included an article by Pomberger, Alexander; Mo, Yiming; Nandiwale, Kakasaheb Y.; Schultz, Victor L.; Duvadie, Rohit; Robinson, Richard I.; Altinoglu, Erhan I.; Jensen, Klavs F.. Recommanded Product: 4-Bromotetrahydropyran. The article was titled 《A Continuous Stirred-Tank Reactor (CSTR) Cascade for Handling Solid-Containing Photochemical Reactions》. The information in the text is summarized as follows:

Visible-light photoredox reactions have been demonstrated to be powerful synthetic tools to access pharmaceutically relevant compounds However, many photoredox reactions involve insoluble starting materials or products that complicate the use of continuous flow methods. By integrating a new solid-feeding strategy and a continuous stirred-tank reactor (CSTR) cascade, we realize a new solid-handling platform for conducting heterogeneous photoredox reactions in flow. Residence time distributions for single phase and solid particles characterize the hydrodynamics of the heterogeneous flow in the CSTR cascade. Silyl radical-mediated metallaphotoredox cross-electrophile coupling reactions with an inorganic base as the insoluble starting material demonstrate the use of the platform. Gram-scale synthesis is achieved in 13 h of stable operation. In the experiment, the researchers used many compounds, for example, 4-Bromotetrahydropyran(cas: 25637-16-5Recommanded Product: 4-Bromotetrahydropyran)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: preparation of anthranilic acids as antibacterial agents with human serum albumin binding affinity; preparation of antiatherogenic antioxidant di-tert-butyldihydrobenzofuranols via Grignard reactions with di-tert-butyl(hydroxy)benzaldehyde derivatives; synthesis of gephyrotoxin via the Schmidt reaction.Recommanded Product: 4-Bromotetrahydropyran

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Li, Gang’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2017 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Product Details of 25637-16-5

In 2017,Li, Gang; Ma, Xingxing; Jia, Chunqi; Han, Qingqing; Wang, Ya; Wang, Junjie; Yu, Liuyang; Yang, Suling published 《Ruthenium-catalyzed meta/ortho-selective C-H alkylation of azoarenes using alkyl bromides》.Chemical Communications (Cambridge, United Kingdom) published the findings.Product Details of 25637-16-5 The information in the text is summarized as follows:

Meta/ortho-selective CAr-H (di)alkylation reactions of azoarenes I (R = C6H5, 4-CH3C6H4, 4-ClC6H4, etc.; R1 = H, 4-CH3, 4-Br, etc.) have been achieved via [Ru(p-cymene)Cl2]2 catalyzed ortho-metalation using various types of alkyl bromides such as 3-bromopentane, bromocyclohexane, 2-bromo-2-methylpropane, etc. Particularly, dual meta-alkylation of azoarenes I and reduction offer an attractive strategy for the synthesis of meta-alkylanilines such as 3-(pentan-3-yl)aniline, 4-methyl-3-(pentan-3-yl)aniline, 4-bromo-3-(pentan-3-yl)aniline, etc. which are difficult to access via traditional aniline functionalization methods. After reading the article, we found that the author used 4-Bromotetrahydropyran(cas: 25637-16-5Product Details of 25637-16-5)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Product Details of 25637-16-5

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Delcaillau, Tristan’s team published research in Angewandte Chemie, International Edition in 2020 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: preparation of anthranilic acids as antibacterial agents with human serum albumin binding affinity; preparation of antiatherogenic antioxidant di-tert-butyldihydrobenzofuranols via Grignard reactions with di-tert-butyl(hydroxy)benzaldehyde derivatives; synthesis of gephyrotoxin via the Schmidt reaction.Application of 25637-16-5

《Nickel-Catalyzed Inter- and Intramolecular Aryl Thioether Metathesis by Reversible Arylation》 was written by Delcaillau, Tristan; Bismuto, Alessandro; Lian, Zhong; Morandi, Bill. Application of 25637-16-5 And the article was included in Angewandte Chemie, International Edition in 2020. The article conveys some information:

A nickel-catalyzed aryl thioether metathesis was developed to access high-value thioethers. 1,2-Bis(dicyclohexylphosphino)ethane (dcype) is essential to promote this highly functional-group-tolerant reaction. Furthermore, synthetically challenging macrocycles could be obtained in good yield in an unusual example of ring-closing metathesis that does not involve alkene bonds. In-depth organometallic studies support a reversible Ni0/NiII pathway to product formation. Overall, this work not only provides a more sustainable alternative to previous catalytic systems based on Pd, but also presents new applications and mechanistic information that are highly relevant to the further development and application of unusual single-bond metathesis reactions.4-Bromotetrahydropyran(cas: 25637-16-5Application of 25637-16-5) was used in this study.

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: preparation of anthranilic acids as antibacterial agents with human serum albumin binding affinity; preparation of antiatherogenic antioxidant di-tert-butyldihydrobenzofuranols via Grignard reactions with di-tert-butyl(hydroxy)benzaldehyde derivatives; synthesis of gephyrotoxin via the Schmidt reaction.Application of 25637-16-5

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics