Impact of Ultrasonic Energy on the Crystallization of Dextrose Monohydrate was written by Devarakonda, Surya;Evans, James M. B.;Myerson, Allan S.. And the article was included in Crystal Growth & Design in 2003.Formula: C6H14O7 This article mentions the following:
In this paper, we investigate the potential of ultrasonic energy in assisting the crystallization of dextrose monohydrate, which is primarily manufactured via slow cool batch, lasting 48 h (0.5 °C/h), seeded crystallization; this cooling curve is designed to optimize the crystal growth and give rise to relatively large dextrose crystals. This study was interested in the impact of ultrasound on the nucleation, crystal breakage/size distribution, and rate of growth of the dextrose, while producing a product of the desired crystal size distribution. Exptl. results show that ultrasonic energy can be used to induce nucleation and increase the overall mass rate of crystal growth while producing product with the desired crystal size distribution. In the experiment, the researchers used many compounds, for example, (2S,3R,4S,5S,6R)-6-(Hydroxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetraol hydrate (cas: 14431-43-7Formula: C6H14O7).
(2S,3R,4S,5S,6R)-6-(Hydroxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetraol hydrate (cas: 14431-43-7) belongs to tetrahydropyran derivatives. Numerous natural products have tetrahydropyran skeleton as the building block for designing new natural products and their derivatives e.g. aplysiatoxins, avermectins, oscillatoxins, talaromycins, latrunculins and acutiphycins. The bismuth chloride-assisted cross-cyclization between homoallylic alcohols and epoxides provided various benzyl tetrahydropyran derivatives. The reaction afforded good yields of desired products and occurred under mild conditions.Formula: C6H14O7
Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics