Ashley, William L. et al. published their research in Journal of Organic Chemistry in 2018 | CAS: 13417-49-7

5,6-Dihydro-2H-pyran-3-carbaldehyde (cas: 13417-49-7) belongs to tetrahydropyran derivatives. Tetrahydropyrans are also used as important solvents, as chemical intermediate and as monomer for ring-opening polymerization. One classic procedure for the organic synthesis of tetrahydropyran is by hydrogenation of the 3,4-isomer of dihydropyran with Raney nickel.Recommanded Product: 5,6-Dihydro-2H-pyran-3-carbaldehyde

Flow Photo-Nazarov Reactions of 2-Furyl Vinyl Ketones: Cyclizing a Class of Traditionally Unreactive Heteroaromatic Enones was written by Ashley, William L.;Timpy, Evan L.;Coombs, Thomas C.. And the article was included in Journal of Organic Chemistry in 2018.Recommanded Product: 5,6-Dihydro-2H-pyran-3-carbaldehyde This article mentions the following:

Nazarov reactions of 2-furyl vinyl ketones and related heteroaromatic enones, to produce furan-fused cyclopentanones using a flow photochem. approach, are described. Compounds possessing this connectivity between heterocycle and ketone (2-furyl, 2-benzofuryl, 2-thiophene-yl, and 2-benzothiophene-yl) have traditionally proven difficult or impossible to cyclize with typical Bronsted and Lewis acid mediated methods. Using mild flow photochem. conditions and acetic acid (AcOH) or hexafluoroisopropanol (HFIP) as solvent, these compounds were found to cyclize in 45-97% yields, with typical UV exposure times of 3.4-6.8 min. In all cases, 2-furyl and 2-thiophene-yl enones cyclized, whereas 2-benzofuryl and 2-benzothiophene-yl enones exhibited divergent properties with reactivity patterns tied to the identity of the vinyl group. This report discloses the first photo-Nazarov reactions of tetrahydropyridine-substituted 2-furyl ketones, providing a direct approach to the corresponding fused heterocyclic motifs built around a central cyclopentanone. These motifs constitute the core structures of biol. active natural products, including the marine alkaloid nakadomarin A. In the experiment, the researchers used many compounds, for example, 5,6-Dihydro-2H-pyran-3-carbaldehyde (cas: 13417-49-7Recommanded Product: 5,6-Dihydro-2H-pyran-3-carbaldehyde).

5,6-Dihydro-2H-pyran-3-carbaldehyde (cas: 13417-49-7) belongs to tetrahydropyran derivatives. Tetrahydropyrans are also used as important solvents, as chemical intermediate and as monomer for ring-opening polymerization. One classic procedure for the organic synthesis of tetrahydropyran is by hydrogenation of the 3,4-isomer of dihydropyran with Raney nickel.Recommanded Product: 5,6-Dihydro-2H-pyran-3-carbaldehyde

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics