New learning discoveries about 101691-94-5

101691-94-5 4-(Iodomethyl)tetrahydro-2H-pyran 2795507, aTetrahydropyrans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.101691-94-5,4-(Iodomethyl)tetrahydro-2H-pyran,as a common compound, the synthetic route is as follows.

In a round bottom flask under argon was placed tetrahydrofuran (50 mL) and 1,1,1,3,3,3-hexamethyldisilazane (3.21 mL, 15.33 mmol) and it was cooled to -78 C. in a dry ice/acetone bath. To this cooled solution was then added n-butyl lithium (2.5 M solution in hexanes, 5.8 mL, 14.38 mmol) and it was stirred for 15 min at -78 C. To this cooled solution was then added a solution of (3,4-dichloro-phenyl)-acetic acid methyl ester (prepared as in PCT WO 2003/095438 A1, Example 1, 3.00 g, 13.69 mmol) in tetrahydrofuran (40 mL) dropwise. This was then stirred for 10 min at -78 C. then at 0 C. for 45 min which resulted in an amber solution. After such time, the reaction was cooled back to -78 C. and a solution of 4-iodomethyl-tetrahydro-pyran (prepared as in PCT WO 2003/095438 A1, Example 20, 3.71 g, 16.43 mmol) in 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (2.5 mL, 20.54 mmol) was added dropwise at -78 C. The reaction was then allowed to slowly warm to 0 C. and it was stirred for 16 h. After such time, the reaction was diluted with ethyl acetate (500 mL) and washed with a saturated aqueous ammonium chloride solution (1¡Á100 mL) followed by a saturated sodium chloride solution wash (1¡Á100 mL). The organics were dried over sodium sulfate, filtered and then concentrated in vacuo. Flash column chromatography (Merck Silica gel 60, 230-400 mesh, 10% ethyl acetate/hexanes to 20% ethyl acetate/hexanes) afforded 2-(3,4-dichloro-phenyl)-3-(tetrahydro-pyran-4-yl)-propionic acid methyl ester (2.26 g, 52%) as a gold viscous oil: 1H NMR(300 MHz, CDCl3) delta ppm 1.22-1.47 (m, 3 H, CH2 and CH of CH2), 1.54-1.75 (m, 3 H, CH2 and CH of CH2), 1.96-2.07 (m, 1 H, CH), 3.25-3.36 (m, 2 H, OCH2), 3.64 (t, J=7.4 Hz, 1 H, ArCH), 3.89-3.97 (m, 2 H, OCH2), 7.15 (dd, Jo=8.3 Hz, Jm=2.0 Hz, 1 H, Ar), 7.37-7.42 (m, 2 H, Ar)., 101691-94-5

101691-94-5 4-(Iodomethyl)tetrahydro-2H-pyran 2795507, aTetrahydropyrans compound, is more and more widely used in various.

Reference£º
Patent; Berthel, Steven Joseph; Kester, Robert Francis; Murphy, Douglas Eric; Prins, Thomas Jay; Ruebsam, Frank; Sarabu, Ramakanth; Tran, Chinh Viet; Vourloumis, Dionisios; US2008/21032; (2008); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics