With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.185815-59-2,4-Isobutyldihydro-2H-pyran-2,6(3H)-dione,as a common compound, the synthetic route is as follows.
Example 15: Preparation of r3R)-5-methyl-3-(2-oxo-2(rriR)-l-phenylethvnamino}ethyl) hexanoic acid compound (24); [0089] A three-neck- flask equipped with an addition funnel, thermometer pocket, drying tube and a mechanical stirrer, was charged with n-butanol (100 ml), (R)-(+)- phenylethylamine (35.58 g, 0.147mole) and 4-dimethylaminopyridine (0.18 g, 0.00147 mole). The mixture was cooled to a temperature of 0-50C, followed by addition of a solution of 3-isobutyl glutaric anhydride (25 g, 0.147 mole) in n-butanol (25 ml), over a period of 15-20 minutes, and stirring for additional 1.5-2 hours, at a temperature of 0-50C. The solvent was stripped off and the residue was extracted with 2.5-3 percent aqueous solution of NaOH solution (500 ml), and diluted with water (1000 ml) followed by washing the aqueous phase with toluene (1 x 100 ml and 1 x 50 ml). The pH of the aqueous phase was adjusted to 2-2.5 EPO
185815-59-2, As the paragraph descriping shows that 185815-59-2 is playing an increasingly important role.
Reference£º
Patent; TEVA PHARMACEUTICAL INDUSTRIES LTD.; TEVA PHARMACEUTICALS USA, INC.; WO2007/35789; (2007); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics