Research on new synthetic routes about 16400-32-1

This literature about this compound(16400-32-1)Application In Synthesis of 1-Bromo-2-pentynehas given us a lot of inspiration, and I hope that the research on this compound(1-Bromo-2-pentyne) can be further advanced. Maybe we can get more compounds in a similar way.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Hou, Si-Hua; Yu, Xuan; Zhang, Rui; Deng, Lin; Zhang, Mengxi; Prichina, Adriana Y.; Dong, Guangbin researched the compound: 1-Bromo-2-pentyne( cas:16400-32-1 ).Application In Synthesis of 1-Bromo-2-pentyne.They published the article 《Enantioselective Type II Cycloaddition of Alkynes via C-C Activation of Cyclobutanones: Rapid and Asymmetric Construction of [3.3.1] Bridged Bicycles》 about this compound( cas:16400-32-1 ) in Journal of the American Chemical Society. Keywords: bridged cyclic compound preparation enantioselective diastereoselective chemoselective; alkyne cyclobutanone cyclization rhodium catalyst. We’ll tell you more about this compound (cas:16400-32-1).

Synthesis of bridged scaffolds via Type II cyclization constitutes substantial challenges due to the intrinsic ring strain accumulated in reaction transition states. Catalytic enantioselective Type II-cyclization methods are even rarer. Here, a detailed study of developing a Rh(I)-catalyzed enantioselective intramol. Type II cyclization of alkynes via C-C activation of cyclobutanones is described. This method offers a rapid approach to access a wide range of functionalized [3.3.1]-bridged bicycles along with an exocyclic olefin and an all-carbon quaternary stereocenter. Excellent enantioselectivity has been achieved using a combination of cationic rhodium(I) and DTBM-segphos. Attributed to the redox neutral and strong acid/base-free reaction conditions, high chemoselectivity has also been observed For the oxygen-tethered substrates, the reaction can proceed at room temperature In addition, partial kinetic resolution has been achieved for substrates with existing stereocenters, forging interesting chiral tricyclic scaffolds. The methylalkyne-derived substrates gave unexpected dimeric structures in good yield with excellent enantioselectivity and complete diastereoselectivity. Furthermore, the bridged bicyclic products can be diversely functionalized through simple transformations. Finally, mechanistic studies reveal a surprising reaction pathway that involves forming a metal-stabilized anti-Bredt olefin intermediate.

This literature about this compound(16400-32-1)Application In Synthesis of 1-Bromo-2-pentynehas given us a lot of inspiration, and I hope that the research on this compound(1-Bromo-2-pentyne) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics