Machine Learning in Chemistry about 97739-46-3

This literature about this compound(97739-46-3)Related Products of 97739-46-3has given us a lot of inspiration, and I hope that the research on this compound(1,3,5,7-Tetramethyl-6-phenyl-2,4,8-trioxa-6-phosphaadamantane) can be further advanced. Maybe we can get more compounds in a similar way.

Related Products of 97739-46-3. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 1,3,5,7-Tetramethyl-6-phenyl-2,4,8-trioxa-6-phosphaadamantane, is researched, Molecular C16H21O3P, CAS is 97739-46-3, about Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Author is Buitrago Santanilla, Alexander; Regalado, Erik L.; Pereira, Tony; Shevlin, Michael; Bateman, Kevin; Campeau, Louis-Charles; Schneeweis, Jonathan; Berritt, Simon; Shi, Zhi-Cai; Nantermet, Philippe; Liu, Yong; Helmy, Roy; Welch, Christopher J.; Vachal, Petr; Davies, Ian W.; Cernak, Tim; Dreher, Spencer D..

At the forefront of new synthetic endeavors, such as drug discovery or natural product synthesis, large quantities of material are rarely available and timelines are tight. A miniaturized automation platform enabling high-throughput experimentation for synthetic route scouting to identify conditions for preparative reaction scale-up would be a transformative advance. Because automated, miniaturized chem. is difficult to carry out in the presence of solids or volatile organic solvents, most of the synthetic toolkit cannot be readily miniaturized. Using palladium-catalyzed cross-coupling reactions as a test case, we developed automation-friendly reactions to run in DMSO at room temperature This advance enabled us to couple the robotics used in biotechnol. with emerging mass spectrometry-based high-throughput anal. techniques. More than 1500 chem. experiments were carried out in less than a day, using as little as 0.02 mg of material per reaction. The synthesis of the target compounds was achieved using as starting materials N-(1,1-dimethylethyl)-4′-[(6-iodo-4-oxo-2-propyl-3(4H)-quinazolinyl)methyl][1,1′-biphenyl]-2-sulfonamide, (5R)-3-(3-fluoro-4-iodophenyl)-5-(1H-1,2,3-triazol-1-ylmethyl)-2-oxazolidinone, 7-[(3-bromo-4-methoxyphenyl)methyl]-1-ethyl-3,7-dihydro-8-[[(1R,2R)-2-hydroxycyclopentyl]amino]-3-(2-hydroxyethyl)-1H-purine-2,6-dione. Other reactants included (3R,4S)-3-[[[[3-bromo-5-(3-methoxypropyl)-4-methylphenyl]methyl]cyclopropylamino]carbonyl]-4-(1,2-dihydro-1-methyl-2-oxo-4-pyridinyl)-1-piperidinecarboxylic acid 1,1-dimethylethyl ester, 1-[(4-chlorophenyl)methyl]-3-[(1,1-dimethylethyl)thio]-5-(3-isoquinolinylmethoxy)-α,α-dimethyl-1H-indole-2-propanoic acid Me ester. Amine reactants included 1-piperazinecarboxylic acid Et ester, 1-(aminomethyl)cyclopropanecarboxylic acid ester, carbamic acid 1,1-dimethylethyl ester, 4-fluoro-2-pyridinamine, 2-thiophenesulfonamide, 2-(dimethylamino)acetamide, cyclopropanecarboximidamide, 1-methly-1H-pyrazole-2-ethanol, 2-cyano-N,N-dimethylacetamide, 1-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole, 2-(ethynyl)pyrazine. A series of catalysts and reagents was evaluated.

This literature about this compound(97739-46-3)Related Products of 97739-46-3has given us a lot of inspiration, and I hope that the research on this compound(1,3,5,7-Tetramethyl-6-phenyl-2,4,8-trioxa-6-phosphaadamantane) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics