Some scientific research about 16400-32-1

After consulting a lot of data, we found that this compound(16400-32-1)Application In Synthesis of 1-Bromo-2-pentyne can be used in many types of reactions. And in most cases, this compound has more advantages.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Chemical Science called Rhodium-catalysed tetradehydro-Diels-Alder reactions of enediynes via a rhodium-stabilized cyclic allene, Author is Thadkapally, Srinivas; Farshadfar, Kaveh; Drew, Melanie A.; Richardson, Christopher; Ariafard, Alireza; Pyne, Stephen G.; Hyland, Christopher J. T., which mentions a compound: 16400-32-1, SMILESS is CCC#CCBr, Molecular C5H7Br, Application In Synthesis of 1-Bromo-2-pentyne.

Herein, tethered unconjugated enediynes R1CCCH=CHCH(R3)XCH2CCR2 [R1 = Ph, n-pentyl, 4-fluorophenyl, etc.; R2 = H, Et, Ph; R3 = H, Me, n-Pr; X = O, NTs, NNs, C(C(O)OMe)2] have been shown to undergo a facile room-temperature RhI-catalyzed intramol. tetradehydro-Diels-Alder reaction to produce highly substituted isobenzofurans, isoindolines and indane I. Furthermore, exptl. and computational studies suggest a novel mechanism involving an unprecedented and complex RhI/RhIII/RhI/RhIII redox cycle involving the formation of an unusual strained 7-membered rhodacyclic allene intermediate and a RhIII-stabilized 6-membered ring allene complex.

After consulting a lot of data, we found that this compound(16400-32-1)Application In Synthesis of 1-Bromo-2-pentyne can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics