The Best Chemistry compound: 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Category: tetrahydropyran can be used in many types of reactions. And in most cases, this compound has more advantages.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Bulletin of the Korean Chemical Society called Introduction of heterocycles at the 2-position of indoline as ester bioisosteres, Author is Lee, Sunkyung; Yi, Kyu Yang; Yoo, Sung-eun, which mentions a compound: 50501-07-0, SMILESS is O=C(C1NC2=C(C=CC=C2)C1)OCC, Molecular C11H13NO2, Category: tetrahydropyran.

Compounds were prepared with heterocyclic replacements for metabolically unstable esters of benzopyranyl indole-2-carboxylic esters, which showed good in vitro and in vivo cardioprotective efficacies possibly through the opening of mitochondrial ATP-sensitive potassium channel (KATP). Initially, indolin-2-yl-heterocycles were constructed using unprotected indoline-2-carboxylic acid, but the cyclization was proceeded with oxidation of the indoline ring to the indole, which did not react with benzopyranyl epoxide. An N-BOC group was introduced to deplete the electron d. of the indoline ring. Various indolin-2-yl-heterocycles, such as I and II, were prepared by the cyclization of the building blocks including carboxamide, β-hydroxy amide, hydrazide, nitrile starting from N-BOC-indoline-2-carboxylic acid.

After consulting a lot of data, we found that this compound(50501-07-0)Category: tetrahydropyran can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics