Brief introduction of 14774-37-9

As the paragraph descriping shows that 14774-37-9 is playing an increasingly important role.

14774-37-9, Tetrahydropyran-4-methanol is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Intermediate 25: (Tetrahydro-2H-pyran-4-y0methyl methanesulfonate (Tetrahydro-2H-pyran-4-yl)methanol (29.9 mg, 0.257 mmol) was dissolved in dichloromethane (DCM) (4 mL). To this solution was added triethylamine (0.108 mL, 0.772 mmol). The reaction was cooled to 0 C, methanesulfonyl chloride (0.03 mL, 0.386 mmol) added and the reaction left to stir overnight, allowing the reaction to warm to 20 C. The reaction was concentrated in vacuo. The product was partitioned between ethyl acetate (20 mL) and aqueous saturated sodium bicarbonate (20 mL). The organic phase was dried and concentrated in vacuo, before being used in the next reaction with no further purification or characterisation, 49 mg., 14774-37-9

As the paragraph descriping shows that 14774-37-9 is playing an increasingly important role.

Reference£º
Patent; GLAXO GROUP LIMITED; BIRAULT, Veronique; CAMPBELL, Amanda Jennifer; HARRISON, Stephen; LE, Joelle; SHUKLA, Lena; WO2013/160418; (2013); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 14774-37-9

14774-37-9 Tetrahydropyran-4-methanol 2773573, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14774-37-9,Tetrahydropyran-4-methanol,as a common compound, the synthetic route is as follows.

Step 1 a Synthesis of Tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate To a stirred solution of (tetrahydro-2H-pyran-4-yl)methanol (300 mg, 2.58 mM) in DCM (5 ml), triethyl amine (784 mg, 7.75 mM) was added. The reaction mixture was stirred for 5 min at 0 QC followed by the addition of 4-methylbenzene-1 -sulfonyl chloride (542 mg, 2.84 mM). The reaction mixture was further stirred for 2h. RM, concentrated and purified by column chromatography to afford the title compound tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate (634 mg). Yield: 91 %; 1 H NMR (CDCI3, 300 MHz): delta 7.81 (d, J=8.1 Hz, 2H), 7.38 (d, J=8.1 Hz, 2H), 3.97-3.86 (m, 4H), 3.36 (t, J=6.5 Hz, 2H), 2.47 (s, 3H), 1 .97-1 .94 (m, 1 H), 1 .62 (d, J=12 Hz, 2H), 1 .35-1 .23 (m, 2H), MS: m/z 293 (M+Na)., 14774-37-9

14774-37-9 Tetrahydropyran-4-methanol 2773573, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; PIRAMAL ENTERPRISES LIMITED; KUMAR, Sanjay; SHARMA, Rajiv; MAHAJAN, Vishal, Ashok; SAWARGAVE, Sangameshwar, Prabhakar; WO2013/128378; (2013); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 14774-37-9

As the paragraph descriping shows that 14774-37-9 is playing an increasingly important role.

14774-37-9, Tetrahydropyran-4-methanol is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 2: Synthesis of toluene-4-sulfonic acid tetrahydro-pyran-4-ylmethyl ester; Prepared as described by adaptation of the following literature reference:Radziszewski, J. G. et al. J. Am. Chem. Soc. 1993, 115, 8401.To a solution of 97 g (810 mmol) of (tetrahydro-pyran-4-yl)-methanol in 2-methyltetrahydrofuran (190 mL) are added 165 mL of 50% aqueous NaOH solution. To this stirred suspension is added dropwise with cooling a solution of p-toluene-sulfonylchloride (283 g, 1.46 mol) in 2-methyltetrahydrofuran (280 mL). The reaction is stirred at 30-35 C. for 18 h. The suspension is poured into a mixture of ice-water (280 mL) and aqueous HCl solution (37%, 203 mL). After addition of methylcyclohexane (1.4 L) and further ice-water (0.2 L), the reaction mixture is stirred for 2 h in an ice-bath. The resulting crystalline precipitate is isolated by filtration and washed with methylcyclohexane (0.5 L) and water (0.5 L). Drying under reduced pressure at 40 C. gave 216 g of toluene-4-sulfonic acid tetrahydro-pyran-4-ylmethyl ester as white crystalline solid. Yield: 99%, ES-MS: m/z 271 [M+H]; 1H NMR (400 MHz, CHLOROFORM-d) delta ppm1.19-1.35 (2H, m), 1.54-1.63 (2H, m), 1.85-2.02 (1H, m), 2.45 (3H, s), 3.28-3.39 (2H, m), 3.86 (2H, d, J=6.60 Hz), 3.93 (2H, dd, J=11.37, 4.52 Hz), 7.35 (2H, d, J=9.29 Hz), 7.78 (2H, d, J=8.31 Hz), 14774-37-9

As the paragraph descriping shows that 14774-37-9 is playing an increasingly important role.

Reference£º
Patent; Boehringer Ingelheim International GmbH; US2010/76029; (2010); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 14774-37-9

The synthetic route of 14774-37-9 has been constantly updated, and we look forward to future research findings.

14774-37-9, Tetrahydropyran-4-methanol is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To the stirred solution of tetrahydropyran-4-ylmethanol 10-1 (200 mg, 1.72 mmol) in DCM (5 rnL) was added TEA (348.46 mg, 3.44 mmol, 479.97 uL) followed by methanesulfonyl chloride 10-2 (236.68 mg, 2.07 mmol, 159.92 uL). The reaction was stirred at room temperature for 5 hours and the cooled to room temperature, diluted with ethyl acetate, washed with water, brine, dried over sodium sulfate and concentrated under reduced pressure to afford tetrahydropyran-4-ylmethyl methanesulfonate 10-3 (328 mg, 1.69 mmol, 98.07% yield) as gum. 1HNMR (400 MHz, DMSO- d6) 5 4.1-4.0 (m, 2H), 3.85 (dd, J = 11.28, 3.96 Hz, 2H), 3.34-3.26 (m, 2H), 3.17(s, 3H), 1.98-1.88 (m, I I I), 1.60-1.55 (m, 2H), 1.31-1.20 (m, 21 1), 14774-37-9

The synthetic route of 14774-37-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; C4 THERAPEUTICS, INC.; VEITS, Gesine, Kerstin; HE, Minsheng; HENDERSON, James, A.; NASVESCHUK, Christopher, G.; PHILLIPS, Andrew, J.; GOOD, Andrew, Charles; (471 pag.)WO2019/191112; (2019); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 14774-37-9

14774-37-9, The synthetic route of 14774-37-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14774-37-9,Tetrahydropyran-4-methanol,as a common compound, the synthetic route is as follows.

Step 1 a Synthesis of Tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate To a stirred solution of (tetrahydro-2H-pyran-4-yl)methanol (300 mg, 2.58 mM) in DCM (5 ml), triethyl amine (784 mg, 7.75 mM) was added. The reaction mixture was stirred for 5 min at 0 QC followed by the addition of 4-methylbenzene-1 -sulfonyl chloride (542 mg, 2.84 mM). The reaction mixture was further stirred for 2h. RM, concentrated and purified by column chromatography to afford the title compound tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate (634 mg). Yield: 91 %; 1 H NMR (CDCI3, 300 MHz): delta 7.81 (d, J=8.1 Hz, 2H), 7.38 (d, J=8.1 Hz, 2H), 3.97-3.86 (m, 4H), 3.36 (t, J=6.5 Hz, 2H), 2.47 (s, 3H), 1 .97-1 .94 (m, 1 H), 1 .62 (d, J=12 Hz, 2H), 1 .35-1 .23 (m, 2H), MS: m/z 293 (M+Na).

14774-37-9, The synthetic route of 14774-37-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; PIRAMAL ENTERPRISES LIMITED; KUMAR, Sanjay; SHARMA, Rajiv; MAHAJAN, Vishal, Ashok; SAWARGAVE, Sangameshwar, Prabhakar; WO2013/128378; (2013); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 14774-37-9

14774-37-9, The synthetic route of 14774-37-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14774-37-9,Tetrahydropyran-4-methanol,as a common compound, the synthetic route is as follows.

I: Toluene-4-sulfonic acid tetrahydropyran-4-ylmethyl ester Intermediate p-Toluenesulfonyl chloride (29.8 g, 157 mmol) was added portionwise to a mixture of tetrahydro-2H-pyran-4-yl-methanol (20.0 g, 172 mmol) and pyridine (25.2 ml, 313 mmol) in dichloromethane (200 ml). The mixture was stirred at room temperature for 17 h, then quenched with aqueous hydrochloric acid (2 M; 100 ml). The layers were separated and the aqueous layer extracted 2 with dichloromethane (2*100 ml). The organic layers were combined and concentrated in vacuo. Recrystallisation from dichloromethane:n-heptane (5:1) afforded toluene-4-sulfonic acid tetrahydro-pyran-4-ylmethyl ester. The mother liquors were further purified by silica gel column chromatography eluding with 50% dichloromethane in n-heptane to yield a further quantity of toluene-4-sulfonic acid tetrahydropyran-4-ylmethyl ester (total yield 41.6 g, 154 mmol).

14774-37-9, The synthetic route of 14774-37-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; N.V. Organon; US2008/207598; (2008); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 14774-37-9

14774-37-9 Tetrahydropyran-4-methanol 2773573, aTetrahydropyrans compound, is more and more widely used in various fields.

14774-37-9, Tetrahydropyran-4-methanol is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

[0217] A solution of (tetrahydro-pyran-4-yl)-methanol (1.0 g, 8.61 mmol, prepared according to WO 99/00385) in methylene chloride (30 mL) at 25 C. was treated with 4-(dimethylamino)pyridine (1.17 g, 9.47 mmol) and p-toluenesulfonyl chloride (1.64 g, 8.61 mmol) and then was allowed to stir at 25 C. overnight. The reaction was then transferred to a separatory funnel and washed with a 1N aqueous hydrochloric acid solution (10 mL), a saturated aqueous sodium bicarbonate solution (10 mL), and a saturated aqueous sodium chloride solution (10 mL), dried over sodium sulfate, filtered, and concentrated in vacuo. Biotage chromatography (FLASH 40S, Silica, 75/25 hexanes/ethyl acetate) afforded toluene-4-sulfonic acid tetrahydro-pyran-4-yl methyl ester (1.77 g, 76%) as a colorless oil. [0218] A solution of toluene-4-sulfonic acid tetrahydro-pyran-4-yl methyl ester (1.77 g, 6.55 mmol) and sodium iodide (2.85 g, 18.99 mmol) in acetone (26 mL) was heated to 60 C. for 16 h. The resulting suspension was then cooled to 10 C. and filtered. The salts were rinsed with cold acetone (5 mL), and the filtrate and washings were concentrated in vacuo to a thick slurry. This slurry was treated with methylene chloride (10 mL). The resulting precipitate was removed by filtration and was washed with methylene chloride (10 mL). The filtrate and washings were then dried over magnesium sulfate, filtered through a pad of silica gel, and then concentrated in vacuo to afford 4-iodomethyl-tetrahydro-pyran as a light yellow oil. [0219] A solution of diisopropylamine (0.33 mL, 2.38 mmol) in tetrahydrofuran (6 mL) cooled to -78 C. under an argon atmosphere was treated with a 2.5M solution of n-butyllithium in hexanes (0.95 mL, 2.38 mmol). The reaction mixture was stirred at -78 C. for 15 min, after which time, a solution of (3-chloro-4-methylsulfanyl-phenyl)-acetic acid methyl ester (prepared as in Example 4, 500 mg, 2.17 mmol) in tetrahydrofuran (1 mL) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (0.5 mL) was slowly added via a cannula. The greenish yellow solution was allowed to stir at -78 C. for 1 h, after which time, a solution of 4-iodomethyl-tetrahydro-pyran (588 mg, 2.60 mmol) in 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (0.5 mL) was added via a cannula. The reaction mixture was then allowed to warm to 25 C., where it was stirred for 16 h. The reaction mixture was then quenched by the addition of a saturated aqueous ammonium chloride solution (30 mL). This solution was extracted with ethyl acetate (3¡Á20 mL). The combined organic layers were washed with a 10% aqueous sulfuric acid solution (2¡Á50 mL) and a saturated aqueous sodium bicarbonate solution (2¡Á50 mL), dried over sodium sulfate, filtered, and concentrated in vacuo. Biotage chromatography (FLASH 40S, Silica, 75/25 hexanes/ethyl acetate) afforded 2-(3-chloro-4-methylsulfanyl-phenyl)-3-(tetrahydro-pyran-4-yl)-propionic acid methyl ester (431 mg, 61%) as a yellow oil: EI-HRMS m/e calcd for C16H21ClO3S (M+) 328.0900, found 328.0898. [0220] A solution of 2-(3-chloro-4-methylsulfanyl-phenyl)-3-(tetrahydro-pyran-4-yl)-propionic acid methyl ester (200 mg, 0.61 mmol) in formic acid (0.23 mL) and tetrahydrofuran (0.5 mL) cooled to 0 C. was treated with a 30% aqueous hydrogen peroxide solution (0.35 mL, 3.04 mmol). The reaction was slowly warmed to 25 C. where it was stirred for 16 h. The reaction mixture was then cooled to 0 C., quenched with a saturated aqueous sodium sulfite solution, and then extracted with ethyl acetate (3¡Á20 mL). The organics were dried over sodium sulfate, filtered, and concentrated in vacuo. Biotage chromatography (FLASH 12M, Silica, 60/40 hexanes/ethyl acetate) afforded 2-(3-chloro-4-methanesulfonyl-phenyl)-3-(tetrahydro-pyran-4-yl)-propionic acid methyl ester (190 mg, 87%) as a colorless oil: (ES)+-HRMS m/e calcd for C16H21ClO5S (M+Na)+ 383.0690, found 383.0692. [0221] A, 14774-37-9

14774-37-9 Tetrahydropyran-4-methanol 2773573, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; Corbett, Wendy Lea; Grimsby, Joseph Samuel; Haynes, Nancy-Ellen; Kester, Robert Francis; Mahaney, Paige Erin; Racha, Jagdish Kumar; Sarabu, Ramakanth; Wang, Ka; US2003/225283; (2003); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 14774-37-9

14774-37-9, 14774-37-9 Tetrahydropyran-4-methanol 2773573, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14774-37-9,Tetrahydropyran-4-methanol,as a common compound, the synthetic route is as follows.

Step 1 [0339] (Tetrahydro-2H-pyran-4-yl)methanol (1.00g, 8.61 mmol) was dissolved in THF (3.0 mL), a solution of sodium hydroxide (0.689 g, 17.2 mmol) dissolved in water (0.69 mL) and a solution of p-toluenesulfonyl chloride (3.28 g, 17.2 mmol) dissolved in THF (3.0 mL) were added thereto, and the mixture was stirred at room temperature overnight. Then, 12 mol/L hydrochloric acid (2.0 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (heptane/ethyl acetate = 80/20 to 50/50), whereby (tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate (1.22 g, yield 52%) was obtained. 1H NMR (300 MHz, CDCl3, delta): 7.82-7.76 (m, 2H), 7.37-7.33 (m, 2H), 3.98-3.90 (m, 2H), 3.86 (d, J = 6.6 Hz, 2H), 3.34 (td, J = 11.7, 2.2 Hz, 2H), 2.46 (s, 3H), 2.01-1.87 (m, 1H), 1.61-1.56 (m, 2H), 1.30-1.24 (m, 2H)

14774-37-9, 14774-37-9 Tetrahydropyran-4-methanol 2773573, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; Kyowa Hakko Kirin Co., Ltd.; FURUTA, Takayuki; SAWADA, Takashi; DANJO, Tomohiro; NAKAJIMA, Takahiro; UESAKA, Noriaki; EP2881394; (2015); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 14774-37-9

14774-37-9 Tetrahydropyran-4-methanol 2773573, aTetrahydropyrans compound, is more and more widely used in various fields.

14774-37-9, Tetrahydropyran-4-methanol is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 85b; Preparation of intermediate toluene-4-sulfonic acid tetrahydro-pyran-4-ylmethyl ester; At room temperature, a mixture of (tetrahydro-pyran-4-yl)-methanol (2.4 g, 20.7 mmol), p-toluenesulfonyl chloride (6.73 g, 35.4 mmol), triethylamine (6.6 mL, 47.6 mmol) and DMAP (0.288 g, 2.36 mmol) in DCM (50 mL) was stirred overnight. The solution was washed with water and brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by column chromatography to give the title compound as an oil (4.2 g)., 14774-37-9

14774-37-9 Tetrahydropyran-4-methanol 2773573, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; Chen, Li; Han, Xingchun; He, Yun; Yang, Song; Zhang, Zhuming; US2009/163512; (2009); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 14774-37-9

14774-37-9, The synthetic route of 14774-37-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14774-37-9,Tetrahydropyran-4-methanol,as a common compound, the synthetic route is as follows.

3.1.22a (1 g, 8.62 mmol, 1.0 equiv) was dissolved in dichloromethane (20 mL), TEA (4.36 g, 43.1 mmol, 5.0 equiv), DMAP (0.21 g, 1.72 mmol, 0.2 equiv) were added and cooled toO C. 4-methylbenzenesulfonyl chloride (2.46 g, 12.9 mmol, 1.5 equiv) was added and the reaction mixture was stirred at room temperature for 24 hours. The reaction mixture was quenched with water and extracted with EtOAc. The organic layer was washed with brine, dried over sodium sulfate and concentrated to afford a crude residue. The crude residue was purified by silica gel column chromatography (30-35 % EtOAc/Hexane) to afford the desired product 3.1.22b (0.8 g, 35 % yield). LCMS (mlz): 271.1 [M+H]. 1H NMR (400 MHz, DMSO) 6 7.80 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 3.89 (dd, J = 11.9, 6.4 Hz, 2H), 3.80 (dd, J = 14.4, 6.9 Hz, 2H), 3.24 (dd, J = 22.0, 12.0 Hz, 2H), 2.43 (s, 3H), 1.90-1.71 (m, 2H), 1.51 (dd, J= 31.2, 12.6 Hz, 3H).

14774-37-9, The synthetic route of 14774-37-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; NOVARTIS AG; FU, Jiping; LEE, Patrick; MADERA, Ann Marie; SWEENEY, Zachary Kevin; WO2015/66413; (2015); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics