Chen, Minjian’s team published research in PLoS One in 7 | CAS: 267244-08-6

PLoS One published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Synthetic Route of 267244-08-6.

Chen, Minjian published the artcileBisphenol A alters n-6 fatty acid composition and decreases antioxidant enzyme levels in rat testes: A LC-QTOF-based metabolomics study, Synthetic Route of 267244-08-6, the publication is PLoS One (2012), 7(9), e44754, database is CAplus and MEDLINE.

Background: Male reproductive toxicity induced by exposure to bisphenol A (BPA) has been widely reported. The testes have proven to be a major target organ of BPA toxicity, so studying testicular metabolite variation holds promise for the discovery of mechanisms linked to the toxic effects of BPA on reproduction Methodol./Principal Findings: Male Sprague-Dawley rats were orally administered doses of BPA at the levels of 0, 50 mg/kg/d for 8 wk. We used an unbiased liquid chromatog.-quadrupole time-of-flight (LC-QTOF)-based metabolomics approach to discover, identify and analyze the variation of testicular metabolites. Two n-6 fatty acids, linoleic acid (LA) and arachidonic acid (AA) were identified as potential testicular biomarkers. Decreased levels of LA and increased levels of AA as well as AA/LA ratio were observed in the testes of the exposed group. According to these suggestions, testicular antioxidant enzyme levels were detected. Testicular superoxide dismutase (SOD) declined significantly in the exposed group compared with that in the non-exposed group and the glutathione peroxidase (GSH-Px) as well as catalase (CAT) also showed a decreasing trend in BPA treated group. Conclusions/Significance: BPA caused testicular n-6 fatty acid composition variation and decreased antioxidant enzyme levels. This study emphasizes that metabolomics brings the promise of biomarkers identification for the discovery of mechanisms underlying reproductive toxicity.

PLoS One published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Synthetic Route of 267244-08-6.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydropyran,
Tetrahydropyran – an overview | ScienceDirect Topics

Lindholst, C.’s team published research in Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology in 135C | CAS: 267244-08-6

Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Related Products of tetrahydropyran.

Lindholst, C. published the artcileMetabolism of bisphenol A in zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss) in relation to estrogenic response, Related Products of tetrahydropyran, the publication is Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology (2003), 135C(2), 169-177, database is CAplus and MEDLINE.

The kinetics of bisphenol A (BPA) were investigated in zebrafish (Danio rerio) exposed to 100 μg BPA/l. BPA uptake was measured during a 7-day period followed by an elimination phase of similar duration. After 2, 6, 12, 24, 48, 72, 120 and 168 h of uptake/elimination, fish were analyzed for their content of BPA, bisphenol A glucuronic acid (BPAGA) and bisphenol A sulfate (BPAS). Within the first 24 h steady state levels of BPA, BPAGA and BPAS were reached and the total body concentrations were calculated to be 569, 12,600 and 39.9 ng/g fish, resp. Elimination rates of the three compounds in zebrafish were estimated by fitting the data to a compartment model. An initial rapid elimination phase was observed for BPA and BPAS with total body half lives (T1/2) of <1.1 h and 30 min, followed by a slower second elimination phase with T1/2 values of 139 and 71 h, resp. Excretion of BPAGA occurred from a single compartment with a T1/2 of 35 h. The steady state concentration of BPA and its metabolites were investigated in rainbow trout (Oncorhynchus mykiss) exposed to 100 μg BPA/l. The toxicokinetic parameters from zebrafish and rainbow trout were compared; including previously published data on the rainbow trout. The data indicate that the smaller estrogenic sensitivity observed for the zebrafish may be caused by a more rapid metabolism of BPA in the zebrafish liver.

Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Related Products of tetrahydropyran.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydropyran,
Tetrahydropyran – an overview | ScienceDirect Topics

Gerona, Roy R.’s team published research in Environmental Science & Technology in 47 | CAS: 267244-08-6

Environmental Science & Technology published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Product Details of C21H24O8.

Gerona, Roy R. published the artcileBisphenol-A (BPA), BPA Glucuronide, and BPA Sulfate in Midgestation Umbilical Cord Serum in a Northern and Central California Population, Product Details of C21H24O8, the publication is Environmental Science & Technology (2013), 47(21), 12477-12485, database is CAplus and MEDLINE.

Bisphenol-A (BPA) is an endocrine disrupting chem. used in numerous consumer products, resulting in universal exposure in the United States. Prenatal exposure to BPA is associated with numerous reproductive and developmental effects in animals. However, little is known about human fetal exposure or metabolism of BPA during midgestation. In the present study, the authors present a new liquid chromatog.-tandem mass spectrometry method to directly measure concentrations of BPA and two predominant metabolic conjugates-BPA glucuronide and BPA sulfate-in umbilical cord serum collected from elective second trimester pregnancy terminations. The authors detected at least one form of BPA in all umbilical cord serum samples: BPA (GM 0.16, range < LOD-52.26 ng/mL), BPA glucuronide (GM 0.14, range < LOD-5.41 ng/mL) and BPA sulfate (GM 0.32, range < LOD-12.65 ng/mL). Levels of BPA ranged from less than 1/100th to over 400 times higher than levels of BPA in conjugated form. Although levels of BPA in conjugated form exceeded BPA levels in about 3/4 of the samples, BPA levels were higher in samples with total BPA above the median. The authors’ findings suggest universal fetal exposure to BPA in the authors’ study population, with some at relatively high levels, and the authors provide the first evidence of detectable BPA sulfate in midgestation fetuses.

Environmental Science & Technology published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Product Details of C21H24O8.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydropyran,
Tetrahydropyran – an overview | ScienceDirect Topics

Coughlin, Janis L.’s team published research in Analytical and Bioanalytical Chemistry in 401 | CAS: 267244-08-6

Analytical and Bioanalytical Chemistry published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Product Details of C21H24O8.

Coughlin, Janis L. published the artcileMeasurement of bisphenol A, bisphenol A β-D-glucuronide, genistein, and genistein 4′-β-D-glucuronide via SPE and HPLC-MS/MS, Product Details of C21H24O8, the publication is Analytical and Bioanalytical Chemistry (2011), 401(3), 995-1002, database is CAplus and MEDLINE.

Bisphenol A (BPA) is a synthetic industrial reactant used in the production of polycarbonate plastics, and genistein is a natural phytoestrogen abundant in the soybean. Current studies investigating the endocrine-disrupting effects of concomitant exposures to BPA and genistein have warranted the development of an anal. method for the simultaneous measurement of BPA and genistein, as well as their primary metabolites, bisphenol A β-D-glucuronide (BPA gluc) and genistein 4′-β-D-glucuronide (genistein gluc), resp. All four analytes were extracted from rat plasma via solid phase extraction (SPE). Three SPE cartridges and four elution schemes were tested. Plasma extraction using Bond Elut Plexa cartridges with sequential addition of Et acetate, methanol, and acetonitrile yielded optimal average recoveries of 98.1 ± 1.8% BPA, 94.9 ± 8.0% genistein, 91.4 ± 6.1% BPA gluc, and 103 ± 6.1% genistein gluc. Identification and quantification of the four analytes were performed by a validated HPLC-MS/MS method using electrospray ionization and selective reaction monitoring. This novel anal. method should be applicable to the measurement of BPA, genistein, BPA gluc, and genistein gluc in urine, cultures, and tissue following in vivo exposures. While reports of the determination of BPA and genistein independently exist, the simultaneous optimized extraction and detection of BPA, genistein, BPA gluc, and genistein gluc have not previously been reported. FigureBPA and genistein co-exposure scenario. BPA-laden polycarbonate plastic baby bottle filled with soy milk, a rich source of genistein, provides a classic exposure scenario to young children-a population that is particularly vulnerable to the effects of endocrine-disrupting compounds

Analytical and Bioanalytical Chemistry published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Product Details of C21H24O8.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydropyran,
Tetrahydropyran – an overview | ScienceDirect Topics

Gounden, Verena’s team published research in Reproductive Toxicology in 100 | CAS: 267244-08-6

Reproductive Toxicology published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Product Details of C21H24O8.

Gounden, Verena published the artcileA pilot study: Relationship between Bisphenol A, Bisphenol A glucuronide and sex steroid hormone levels in cord blood in A South African population, Product Details of C21H24O8, the publication is Reproductive Toxicology (2021), 83-89, database is CAplus and MEDLINE.

Exposure to Bisphenol A (BPA) during early development particularly in- utero has been linked to a wide range of pathol. The aim of this study was to examine the relationship of BPA and its naturally occurring metabolite BPA-glucuronide (BPA-g) with sex steroid hormone levels in South African mother-child pairs. Third-trimester serum maternal samples and matching cord blood samples were analyzed for BPA, BPA-g and nine sex steroid hormones using liquid chromatog. tandem mass spectrometry (LC-MS/MS). Sixty maternal and child pairs were analyzed. Rank correlation demonstrated a significant pos. relationship between cord blood estradiol and cord blood BPA (p = 0.002) and maternal BPA levels (p = 0.02) resp. Cord blood testosterone from male infants showed a neg. Spearman’s correlation (r = -0.5, p = 0.02) with maternal BPA-g. There was no statistical difference in total testosterone levels in cord blood from male and female infants. The findings of the current study indicate a significant relationship between some key sex steroid hormones namely testosterone, dihydrotestosterone and estradiol and fetal exposure BPA.

Reproductive Toxicology published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Product Details of C21H24O8.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydropyran,
Tetrahydropyran – an overview | ScienceDirect Topics

Cheng, Cheng’s team published research in ACS Applied Materials & Interfaces in 8 | CAS: 267244-08-6

ACS Applied Materials & Interfaces published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Application of (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid.

Cheng, Cheng published the artcileBisphenol A Sensors on Polyimide Fabricated by Laser Direct Writing for Onsite River Water Monitoring at Attomolar Concentration, Application of (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, the publication is ACS Applied Materials & Interfaces (2016), 8(28), 17784-17792, database is CAplus and MEDLINE.

This work presents an aptamer-based, highly sensitive and specific sensor for atto- to femtomolar level detection of bisphenol A (BPA). Because of its widespread use in numerous products, BPA enters surface water from effluent discharges during its manufacture, use, and from waste landfill sites throughout the world. On-site measurement of BPA concentrations in water is important for evaluating compliance with water quality standards or environmental risk levels of the harmful compound in the environment. The sensor in this work is porous, conducting, interdigitated electrodes that are formed by laser-induced carbonization of flexible polyimide sheets. BPA-specific aptamer is immobilized on the electrodes as the probe, and its binding with BPA at the electrode surface is detected by capacitive sensing. The binding process is aided by a.c. electroosmotic effect that accelerates the transport of BPA mols. to the nanoporous graphene-like structured electrodes. The sensor achieved a limit of detection of 58.28 aM with a response time of 20 s. The sensor is further applied for recovery anal. of BPA spiked in surface water. This work provides an affordable platform for highly sensitive, real time, and field-deployable BPA surveillance critical to the evaluation of the ecol. impact of BPA exposure.

ACS Applied Materials & Interfaces published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Application of (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydropyran,
Tetrahydropyran – an overview | ScienceDirect Topics

Teeguarden, Justin G.’s team published research in Toxicological Sciences in 85 | CAS: 267244-08-6

Toxicological Sciences published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C6H8O6, HPLC of Formula: 267244-08-6.

Teeguarden, Justin G. published the artcileEvaluation of Oral and Intravenous Route Pharmacokinetics, Plasma Protein Binding, and Uterine Tissue Dose Metrics of Bisphenol A: A Physiologically Based Pharmacokinetic Approach, HPLC of Formula: 267244-08-6, the publication is Toxicological Sciences (2005), 85(2), 823-838, database is CAplus and MEDLINE.

Bisphenol A (BPA) is a weakly estrogenic monomer used in the production of polycarbonate plastic and epoxy resins, both of which are used in food contact and other applications. A physiol. based pharmacokinetic (PBPK) model of BPA pharmacokinetics in rats and humans was developed to provide a physiol. context in which the processes controlling BPA pharmacokinetics (e.g., plasma protein binding, enterohepatic recirculation of the glucuronide [BPAG]) could be incorporated. A uterine tissue compartment was included to allow the correlation of simulated estrogen receptor (ER) binding of BPA with increases in uterine wet weight (UWW) in rats. I.v.- and oral-route blood kinetics of BPA in rats and oral-route plasma and urinary elimination kinetics in humans were well described by the model. Simulations of rat oral-route BPAG pharmacokinetics were less exact, most likely the result of oversimplification of the GI tract compartment. Comparison of metabolic clearance rates derived from fitting rat i.v. and oral-route data implied that intestinal glucuronidation of BPA is significant. In rats, but not humans, terminal elimination rates were strongly influenced by enterohepatic recirculation. In the absence of BPA binding to plasma proteins, simulations showed high ER occupancy at doses without uterine effects. Restricting free BPA to the measured unbound amount demonstrated the importance of including plasma binding in BPA kinetic models: the modeled relationship between ER occupancy and UWW increases was consistent with expectations for a receptor-mediated response with low ER occupancy at doses with no response and increasing occupancy with larger increases in UWW.

Toxicological Sciences published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C6H8O6, HPLC of Formula: 267244-08-6.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydropyran,
Tetrahydropyran – an overview | ScienceDirect Topics

Jasinska, Anna’s team published research in International Journal of Molecular Sciences in 22 | CAS: 267244-08-6

International Journal of Molecular Sciences published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Name: (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid.

Jasinska, Anna published the artcileBisphenol A Removal by the Fungus Myrothecium roridum IM 6482-Analysis of the Cellular and Subcellular Level, Name: (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, the publication is International Journal of Molecular Sciences (2021), 22(19), 10676, database is CAplus and MEDLINE.

Bisphenol (BPA) is a key ingredient in the production of epoxy resins and some types of plastics, which can be released into the environment and alter the endocrine systems of wildlife and humans. In this study, the ability of the fungus M. roridum IM 6482 to BPA elimination was investigated. LC-MS/MS anal. showed almost complete removal of BPA from the growth medium within 72 h of culturing. Products of BPA biotransformation were identified, and their estrogenic activity was found to be lower than that of the parent compound Extracellular laccase activity was identified as the main mechanism of BPA elimination. It was observed that BPA induced oxidative stress in fungal cells manifested as the enhancement in ROS production, membranes permeability and lipids peroxidation These oxidative stress markers were reduced after BPA biodegradation (72 h of culturing). Intracellular proteome analyses performed using 2-D electrophoresis and MALDI-TOF/TOF technique allowed identifying 69 proteins in a sample obtained from the BPA containing culture. There were mainly structural and regulator proteins but also oxidoreductive and antioxidative agents, such as superoxide dismutase and catalase. The obtained results broaden the knowledge on BPA elimination by microscopic fungi and may contribute to the development of BPA biodegradation methods.

International Journal of Molecular Sciences published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Name: (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydropyran,
Tetrahydropyran – an overview | ScienceDirect Topics

Domoradzki, J. Y.’s team published research in Toxicological Sciences in 77 | CAS: 267244-08-6

Toxicological Sciences published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Computed Properties of 267244-08-6.

Domoradzki, J. Y. published the artcileAge and Dose Dependency of the Pharmacokinetics and Metabolism of Bisphenol A in Neonatal Sprague-Dawley Rats Following Oral Administration, Computed Properties of 267244-08-6, the publication is Toxicological Sciences (2004), 77(2), 230-242, database is CAplus and MEDLINE.

Previous studies demonstrated the rapid clearance of bisphenol A (BPA) from blood following oral administration to adult rats with the principal metabolite being BPA-monoglucuronide (BPA-glucuronide). Since the ontogeny of glucuronyl transferases (GT) differs with age, the pharmacokinetics of BPA were studied in neonatal animals. 14C-BPA was administered via gavage at 1 or 10 mg/kg body weight to rats at postnatal day (pnd) 4, pnd 7, pnd 21, or to 11 wk old adult rats (10 mg/kg dose only). Blood (neonates and adults) and selected tissues (neonates) were collected at 0.25, 0.75, 1.5, 3, 6, 12, 18, and 24 h postdosing. BPA and BPA-glucuronide in the plasma were quantified by high-performance liquid chromatog.; radioactivity in the plasma and tissues was quantified by liquid scintillation spectrometry. The data indicate that neonatal rats at all three ages metabolized BPA to BPA-glucuronide, although an age dependency in the number and concentration of plasma metabolites was observed, consistent with the ontogeny of GT. BPA-glucuronide and BPA concentrations in the plasma were greater in neonates than in adults, except at 24 h postdosing, suggesting an immaturity in the development of hepatic excretory function in neonatal rats. Nevertheless, the half-lives for the elimination of BPA-glucuronide in plasma were more rapid in neonatal animals than in adults, likely due to reduced microflora β-glucuronidase activity and an absence of enterohepatic recirculation. A dose dependency in the metabolism and pharmacokinetics of BPA administered to neonates was also observed with nearly complete metabolism of BPA to BPA-glucuronide (94-100% of the plasma radioactivity) at a dose of 1 mg/kg. This was in contrast to finding up to 13 different plasma metabolites observed at the 10 mg/kg dose. These data indicate that, from early in neonatal life through pnd 21, there is sufficient GT activity in rats to efficiently metabolize BPA to its nonestrogenic metabolite at low doses.

Toxicological Sciences published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C21H24O8, Computed Properties of 267244-08-6.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydropyran,
Tetrahydropyran – an overview | ScienceDirect Topics

Waechter, J. Jr.’s team published research in Toxicology Mechanisms and Methods in 17 | CAS: 267244-08-6

Toxicology Mechanisms and Methods published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C9H11NO4, HPLC of Formula: 267244-08-6.

Waechter, J. Jr. published the artcileFactors affecting the accuracy of bisphenol A and bisphenol A-monoglucuronide estimates in mammalian tissues and urine samples. [Erratum to document cited in CA146:373802], HPLC of Formula: 267244-08-6, the publication is Toxicology Mechanisms and Methods (2007), 17(2), 125, database is CAplus and MEDLINE.

On page 13, the author affiliations were incorrectly given. The correct affiliation list is given. On page 13, in the left column, the corresponding address was incorrectly given, and should read: “J. Waechter Jr., The Dow Chemical Company, Toxicology and Environmental Research and Consulting, Building 1803, Midland, MI, USA. E-mail: [email protected]”.

Toxicology Mechanisms and Methods published new progress about 267244-08-6. 267244-08-6 belongs to tetrahydropyran, auxiliary class Tetrahydropyran,Chiral,Carboxylic acid,Benzene,Phenol,Alcohol,Ether,, name is (2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid, and the molecular formula is C9H11NO4, HPLC of Formula: 267244-08-6.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydropyran,
Tetrahydropyran – an overview | ScienceDirect Topics