The effect of the change of synthetic route on the product 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Application of 50501-07-0 can be used in many types of reactions. And in most cases, this compound has more advantages.

Application of 50501-07-0. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: Ethyl indoline-2-carboxylate, is researched, Molecular C11H13NO2, CAS is 50501-07-0, about Gold(0) catalyzed dehydrogenation of N-heterocycles. Author is Kumaran, Elumalai; Leong, Weng Kee.

Gold nanoclusters were good catalyst precursors for the catalytic dehydrogenation of indolines to obtain indoles I [R1 = H, 5-Me, 5-F, 5-Br, 5-NO2, 6-NO2; R2 = H, Me, CO2Me, CO2Et]. Furthermore, this method was used to synthesize quinolines and quinazolines II [R3 = H, 4-ClC6H4, 2-furyl, etc.; R4 = H, 6-Br, 6,8-di-Br; X = CH, N] from tetrahydroquinolines and tetrahydroquinazolines. The catalytically active species was presumably Au(0) nanoparticles.

After consulting a lot of data, we found that this compound(50501-07-0)Application of 50501-07-0 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

The influence of catalyst in reaction 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Application In Synthesis of Ethyl indoline-2-carboxylate can be used in many types of reactions. And in most cases, this compound has more advantages.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Hlasta, Dennis J.; Luttinger, Daniel; Perrone, Mark H.; Silbernagel, Marla J.; Ward, Susan J.; Haubrich, Dean R. researched the compound: Ethyl indoline-2-carboxylate( cas:50501-07-0 ).Application In Synthesis of Ethyl indoline-2-carboxylate.They published the article 《α2-Adrenergic agonists/antagonists: the synthesis and structure-activity relationships of a series of indolin-2-yl and tetrahydroquinolin-2-yl imidazolines》 about this compound( cas:50501-07-0 ) in Journal of Medicinal Chemistry. Keywords: indolinylimidazoline preparation adrenergic agonist antagonist; quinolinylimidazoline preparation adrenergic agonist antagonist; structure activity adrenergic indolinylimidazoline. We’ll tell you more about this compound (cas:50501-07-0).

The synthesis and α2-adrenergic activity of a series of indolin-2-yl- and tetrahydroquinolin-2-ylimidazolines, e.g. I (R = Me, Et, allyl, Ph, CH2Ph, etc.; R1 = 5-F, 5-Cl, etc.) and II (R = H, Me) are described. The indolin-2-ylimidazoline I (R = Me, R1 = H) has potent α2-adrenergic agonist and antagonist activity. The modification of the substituents on the indoline ring of I led to the separation of these activities. Substitution on the aromatic ring of I with halogen or increasing the size of the N-alkyl substituent of I gave α2-adrenergic antagonists without agonist activity. The N-allylindoline I (R = allyl, R1 = H) is more potent than idazoxan in vitro and is equipotent in vivo, but is less receptor-selective (α2 vs. α1) than idazoxan. cis-1,3-Dimethylindolin-2-ylimidazoline is an α2-adrenergic agonist equal in potency to clonidine in vitro, whereas trans-1,3-dimethylindolin-2-ylimidazoline is a moderately potent α2-adrenergic antagonist.

After consulting a lot of data, we found that this compound(50501-07-0)Application In Synthesis of Ethyl indoline-2-carboxylate can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

The Absolute Best Science Experiment for 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)COA of Formula: C11H13NO2 can be used in many types of reactions. And in most cases, this compound has more advantages.

Jaiswal, Garima; Subaramanian, Murugan; Sahoo, Manoj K.; Balaraman, Ekambaram published the article 《A Reusable Cobalt Catalyst for Reversible Acceptorless Dehydrogenation and Hydrogenation of N-Heterocycles》. Keywords: cobalt complex preparation surface structure; azaarene cobalt complex catalyst dehydrogenation; nitrogen heterocycle compound cobalt complex catalyst hydrogenation.They researched the compound: Ethyl indoline-2-carboxylate( cas:50501-07-0 ).COA of Formula: C11H13NO2. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:50501-07-0) here.

A highly efficient reusable cobalt-based heterogeneous catalyst for reversible dehydrogenation and hydrogenation of N-heterocycles was repoted. Both the acceptorless dehydrogenation (ADH) and the hydrogenation processes operated under mild and benign conditions.

After consulting a lot of data, we found that this compound(50501-07-0)COA of Formula: C11H13NO2 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

The Best Chemistry compound: 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Category: tetrahydropyran can be used in many types of reactions. And in most cases, this compound has more advantages.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Bulletin of the Korean Chemical Society called Introduction of heterocycles at the 2-position of indoline as ester bioisosteres, Author is Lee, Sunkyung; Yi, Kyu Yang; Yoo, Sung-eun, which mentions a compound: 50501-07-0, SMILESS is O=C(C1NC2=C(C=CC=C2)C1)OCC, Molecular C11H13NO2, Category: tetrahydropyran.

Compounds were prepared with heterocyclic replacements for metabolically unstable esters of benzopyranyl indole-2-carboxylic esters, which showed good in vitro and in vivo cardioprotective efficacies possibly through the opening of mitochondrial ATP-sensitive potassium channel (KATP). Initially, indolin-2-yl-heterocycles were constructed using unprotected indoline-2-carboxylic acid, but the cyclization was proceeded with oxidation of the indoline ring to the indole, which did not react with benzopyranyl epoxide. An N-BOC group was introduced to deplete the electron d. of the indoline ring. Various indolin-2-yl-heterocycles, such as I and II, were prepared by the cyclization of the building blocks including carboxamide, β-hydroxy amide, hydrazide, nitrile starting from N-BOC-indoline-2-carboxylic acid.

After consulting a lot of data, we found that this compound(50501-07-0)Category: tetrahydropyran can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Properties and Exciting Facts About 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Formula: C11H13NO2 can be used in many types of reactions. And in most cases, this compound has more advantages.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Zhang, Yin-Jun; Chen, Chang-Sheng; Liu, Hao-Tian; Chen, Jia-Lin; Xia, Ying; Wu, Shi-Jin researched the compound: Ethyl indoline-2-carboxylate( cas:50501-07-0 ).Formula: C11H13NO2.They published the article 《Purification, identification and characterization of an esterase with high enantioselectivity to (S)-ethyl indoline-2-carboxylate》 about this compound( cas:50501-07-0 ) in Biotechnology Letters. Keywords: esterase enantioselectivity ethyl indoline 2carboxylate; (S)-indoline-2-carboxylic acid; Bacillus aryabhattai B8W22; Characterization; Esterase; Purification. We’ll tell you more about this compound (cas:50501-07-0).

Objective: To purify an esterase which can selectively hydrolyze (R,S)-Et indoline-2-carboxylate to produce (S)-indoline-2-carboxylic acid and characterize its enzymic properties. Results: An intracellular esterase from Bacillus aryabhattai B8W22 was isolated and the purified protein was identified as a carboxylesterase by MALDI-TOF mass spectrometry. The enzyme (named BaCE) was 59.03-fold purification determined to be of approx. 35 kDa. Its specific activity was 0.574 U/mL with 20% yield. The enzyme showed maximum activity at pH 8.5 and 30°C and was stable at 20-30°C using pNPB as the substrate. The esterase demonstrated high enantioselectivity toward (S)-Et indoline-2-carboxylate with 96.55% e.e.p at 44.39% conversion, corresponding to an E value of 133.45. Conclusions: In this study, a new esterase BaCE with an apparent mol. mass of 35 kDa was purified to homogeneity for the first time. The esterase from Bacillus aryabhattai B8W22 was isolated with a purification more than 59-fold and a yield of 20% by anion exchange chromatog. and hydrophobic interaction chromatog. And its biochem. characterization were described in detail with pNPB as substrate. It displayed high enantioselectivity toward (S)-Et indoline-2-carboxylate. We next plan to highly express esterase BaCE in Escherichia coli, and apply it to industrial production of (S)-indoline-2-carboxylic acid.

After consulting a lot of data, we found that this compound(50501-07-0)Formula: C11H13NO2 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Why do aromatic interactions matter of compound: 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Category: tetrahydropyran can be used in many types of reactions. And in most cases, this compound has more advantages.

Category: tetrahydropyran. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: Ethyl indoline-2-carboxylate, is researched, Molecular C11H13NO2, CAS is 50501-07-0, about Synthesis of Azoles Condensed with, or Linked to, Nitroxides. Author is Bognar, Balazs; Kalai, Tamas; Gulyas-Fekete, Gergely; Lazsanyi, Noemi; Hideg, Kalman.

Nitroxides connected to indoles, tetrazoles or 1,3,4-oxadiazoles were synthesized by conventional and microwave-assisted cyclization reactions. New approaches to pyrrole-, pyrazole-, and triazole-annulated nitroxides are described. The authors showed that a Diels-Alder reaction of a N-tert-butoxycarbonyl derivative of (4,4,6,6-tetramethyl-2,4,6,7-tetrahydro-5H-pyrrolo[3,4-c]pyridin-5-yl)oxidanyl gave polycyclic scaffolds condensed with a six-membered nitroxide. The synthesis of the target compounds was achieved using as starting materials 3-cyano-2,5-dihydro-2,2,5,5-tetramethyl-1H-pyrrol-1-yloxy radical, 4-cyano-3,6-dihydro-2,2,6,6-tetramethyl-1(2H)-pyridinyloxy radical, 4-cyano-2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO derivative), 3-formyl-2,5-dihydro-2,2,5,5-tetramethyl-1H-pyrrol-1-yloxy radical and similar nitroxide radical derivatives The title compounds thus formed included triazole-nitroxide radical derivatives, benzotriazole-nitroxide radical derivatives, pyrrole-nitroxide radical derivatives, indole-nitroxide radical derivatives and related substances.

After consulting a lot of data, we found that this compound(50501-07-0)Category: tetrahydropyran can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

A new synthetic route of 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Synthetic Route of C11H13NO2 can be used in many types of reactions. And in most cases, this compound has more advantages.

Synthetic Route of C11H13NO2. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: Ethyl indoline-2-carboxylate, is researched, Molecular C11H13NO2, CAS is 50501-07-0, about Organo-Photoredox Catalyzed Oxidative Dehydrogenation of N-Heterocycles. Author is Sahoo, Manoj K.; Jaiswal, Garima; Rana, Jagannath; Balaraman, Ekambaram.

For the first time the catalytic oxidative dehydrogenation of N-heterocycles by a visible-light organo-photoredox catalyst with low catalyst loading (0.1-1 mol %) was reported. The reaction proceeded efficiently under base- and additive-free conditions with ambient air at room temperature The utility of this benign approach was demonstrated by the synthesis of various pharmaceutically relevant N-heteroarenes such as quinolines, quinoxalines, quinazolines, acridines and indoles.

After consulting a lot of data, we found that this compound(50501-07-0)Synthetic Route of C11H13NO2 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

What unique challenges do researchers face in 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Application In Synthesis of Ethyl indoline-2-carboxylate can be used in many types of reactions. And in most cases, this compound has more advantages.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 50501-07-0, is researched, Molecular C11H13NO2, about (Mercaptopropanoyl)indoline-2-carboxylic acids and related compounds as potent angiotensin converting enzyme inhibitors and antihypertensive agents, the main research direction is indolinecarboxylic acid antihypertensive converting enzyme; angiotensin converting enzyme indilinecarboxylic acid.Application In Synthesis of Ethyl indoline-2-carboxylate.

Stereoisomers of 1-(3-mercapto-2-methyl-1-oxopropyl)indoline-2-carboxylic acid (I) and related compounds were synthesized and their ability to inhibit angiotensin converting enzyme (ACE) [9015-82-1] and to lower the systolic blood pressure of spontaneously hypertensive rats (SHR) examined All 4 possible stereoisomers of the precursor 1-[3-(benzoylthio)-2-methyl-1-oxopropyl]indoline-2-carboxylic acid were characterized with absolute stereochem. assignment. The removal of the benzoyl group of the precursor showed in vitro ACE inhibitory activity; the stereoisomer having the R,R configuration was essentially inactive. The mercaptan (S,S)-I was the most active ACE inhibitor, showing in vitro potency 3 times that of captopril. (S,S)-I exhibited oral antihypertensive activity 27 times that of captopril. The thio lactone obtained by cyclization of (S,S)-I as a potential prodrug was less potent than the parent compound in the ACE inhibitory and antihypertensive tests. Structure-activity relations are discussed.

After consulting a lot of data, we found that this compound(50501-07-0)Application In Synthesis of Ethyl indoline-2-carboxylate can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream Synthetic Route Of 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Reference of Ethyl indoline-2-carboxylate can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference of Ethyl indoline-2-carboxylate. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: Ethyl indoline-2-carboxylate, is researched, Molecular C11H13NO2, CAS is 50501-07-0, about Introduction of heterocycles at the 2-position of indoline as ester bioisosteres. Author is Lee, Sunkyung; Yi, Kyu Yang; Yoo, Sung-eun.

Compounds were prepared with heterocyclic replacements for metabolically unstable esters of benzopyranyl indole-2-carboxylic esters, which showed good in vitro and in vivo cardioprotective efficacies possibly through the opening of mitochondrial ATP-sensitive potassium channel (KATP). Initially, indolin-2-yl-heterocycles were constructed using unprotected indoline-2-carboxylic acid, but the cyclization was proceeded with oxidation of the indoline ring to the indole, which did not react with benzopyranyl epoxide. An N-BOC group was introduced to deplete the electron d. of the indoline ring. Various indolin-2-yl-heterocycles, such as I and II, were prepared by the cyclization of the building blocks including carboxamide, β-hydroxy amide, hydrazide, nitrile starting from N-BOC-indoline-2-carboxylic acid.

After consulting a lot of data, we found that this compound(50501-07-0)Reference of Ethyl indoline-2-carboxylate can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Our Top Choice Compound: 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Application In Synthesis of Ethyl indoline-2-carboxylate can be used in many types of reactions. And in most cases, this compound has more advantages.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Synthesis of Azoles Condensed with, or Linked to, Nitroxides, published in 2015-04-30, which mentions a compound: 50501-07-0, mainly applied to nitroxide pyrrole pyrazole triazole pyridine indole radical preparation, Application In Synthesis of Ethyl indoline-2-carboxylate.

Nitroxides connected to indoles, tetrazoles or 1,3,4-oxadiazoles were synthesized by conventional and microwave-assisted cyclization reactions. New approaches to pyrrole-, pyrazole-, and triazole-annulated nitroxides are described. The authors showed that a Diels-Alder reaction of a N-tert-butoxycarbonyl derivative of (4,4,6,6-tetramethyl-2,4,6,7-tetrahydro-5H-pyrrolo[3,4-c]pyridin-5-yl)oxidanyl gave polycyclic scaffolds condensed with a six-membered nitroxide. The synthesis of the target compounds was achieved using as starting materials 3-cyano-2,5-dihydro-2,2,5,5-tetramethyl-1H-pyrrol-1-yloxy radical, 4-cyano-3,6-dihydro-2,2,6,6-tetramethyl-1(2H)-pyridinyloxy radical, 4-cyano-2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO derivative), 3-formyl-2,5-dihydro-2,2,5,5-tetramethyl-1H-pyrrol-1-yloxy radical and similar nitroxide radical derivatives The title compounds thus formed included triazole-nitroxide radical derivatives, benzotriazole-nitroxide radical derivatives, pyrrole-nitroxide radical derivatives, indole-nitroxide radical derivatives and related substances.

After consulting a lot of data, we found that this compound(50501-07-0)Application In Synthesis of Ethyl indoline-2-carboxylate can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics