Zhang, Xiaheng’s team published research in Journal of the American Chemical Society in 2017 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Recommanded Product: 4-Bromotetrahydropyran

In 2017,Zhang, Xiaheng; MacMillan, David W. C. published 《Direct Aldehyde C-H Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom Transfer, and Photoredox Catalysis》.Journal of the American Chemical Society published the findings.Recommanded Product: 4-Bromotetrahydropyran The information in the text is summarized as follows:

A mechanism that enables direct aldehyde C-H functionalization has been achieved via the synergistic merger of photoredox, nickel, and hydrogen atom transfer catalysis. This mild, operationally simple protocol transforms a wide variety of com. available aldehydes, along with aryl or alkyl bromides, into the corresponding ketones in excellent yield. This C-H abstraction coupling technol. has been successfully applied to the expedient synthesis of the medicinal agent haloperidol. In the experiment, the researchers used many compounds, for example, 4-Bromotetrahydropyran(cas: 25637-16-5Recommanded Product: 4-Bromotetrahydropyran)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Recommanded Product: 4-Bromotetrahydropyran

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Wang, Guang-Zu’s team published research in Journal of the American Chemical Society in 2017 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Safety of 4-Bromotetrahydropyran

In 2017,Wang, Guang-Zu; Shang, Rui; Cheng, Wan-Min; Fu, Yao published 《Irradiation-Induced Heck Reaction of Unactivated Alkyl Halides at Room Temperature》.Journal of the American Chemical Society published the findings.Safety of 4-Bromotetrahydropyran The information in the text is summarized as follows:

The palladium-catalyzed Mizoroki-Heck reaction is arguably one of the most significant carbon-carbon bond-construction reactions to be discovered in the last 50 years, with a tremendous number of applications in the production of chems. This Nobel-Prize-winning transformation has yet to overcome the obstacle of its general application in a range of alkyl electrophiles, especially tertiary alkyl halides that possess eliminable β-hydrogen atoms. Whereas most palladium-catalyzed cross-coupling reactions utilize the ground-state reactivity of palladium complexes under thermal conditions and generally apply a single ligand system, authors report that the palladium-catalyzed Heck reaction proceeds smoothly at room temperature with a variety of tertiary, secondary, and primary alkyl bromides upon irradiation with blue light-emitting diodes in the presence of a dual phosphine ligand system. Also rationalized that this unprecedented transformation is achieved by utilizing the photoexcited-state reactivity of the palladium complex to enhance oxidative addition and suppress undesired β-hydride elimination. In addition to this study using 4-Bromotetrahydropyran, there are many other studies that have used 4-Bromotetrahydropyran(cas: 25637-16-5Safety of 4-Bromotetrahydropyran) was used in this study.

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Safety of 4-Bromotetrahydropyran

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Ben-Tal, Yael’s team published research in Journal of the American Chemical Society in 2022 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.SDS of cas: 25637-16-5

In 2022,Ben-Tal, Yael; Lloyd-Jones, Guy C. published an article in Journal of the American Chemical Society. The title of the article was 《Kinetics of a Ni/Ir-Photocatalyzed Coupling of ArBr with RBr: Intermediacy of ArNiII(L)Br and Rate/Selectivity Factors》.SDS of cas: 25637-16-5 The author mentioned the following in the article:

The Ni/Ir-photocatalyzed coupling of an aryl bromide (ArBr) with an alkyl bromide (RBr) has been analyzed using in situ LED-19F NMR spectroscopy. Four components (light, [ArBr], [Ni], [Ir]) are found to control the rate of ArBr consumption, but not the product selectivity, while two components ([(TMS)3SiH], [RBr]) independently control the product selectivity, but not the rate. A major resting state of nickel has been identified as ArNiII(L)Br, and 13C-isotopic entrainment is used to show that the complex undergoes Ir-photocatalyzed conversion to products (Ar-R, Ar-H, Ar-solvent) in competition with the release of ArBr. A range of competing absorption and quenching effects lead to complex correlations between the Ir and Ni catalyst loadings and the reaction rate. Differences in the Ir/Ni Beer-Lambert absorption profiles allow the rate to be increased by the use of a shorter-wavelength light source without compromising the selectivity. A minimal kinetic model for the process allows simulation of the reaction and provides insights for optimization of these processes in the laboratory In the experiment, the researchers used many compounds, for example, 4-Bromotetrahydropyran(cas: 25637-16-5SDS of cas: 25637-16-5)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.SDS of cas: 25637-16-5

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Zhou, Wen-Jun’s team published research in Angewandte Chemie, International Edition in 2017 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: preparation of anthranilic acids as antibacterial agents with human serum albumin binding affinity; preparation of antiatherogenic antioxidant di-tert-butyldihydrobenzofuranols via Grignard reactions with di-tert-butyl(hydroxy)benzaldehyde derivatives; synthesis of gephyrotoxin via the Schmidt reaction.Name: 4-Bromotetrahydropyran

In 2017,Zhou, Wen-Jun; Cao, Guang-Mei; Shen, Guo; Zhu, Xing-Yong; Gui, Yong-Yuan; Ye, Jian-Heng; Sun, Liang; Liao, Li-Li; Li, Jing; Yu, Da-Gang published 《Visible-Light-Driven Palladium-Catalyzed Radical Alkylation of C-H Bonds with Unactivated Alkyl Bromides》.Angewandte Chemie, International Edition published the findings.Name: 4-Bromotetrahydropyran The information in the text is summarized as follows:

Reported herein is a novel visible-light photoredox system with Pd(PPh3)4 as the sole catalyst for the realization of the first direct cross-coupling of C(sp3)-H bonds in N-aryl tetrahydroisoquinolines with unactivated alkyl bromides. Moreover, intra- and intermol. alkylations of heteroarenes were also developed under mild reaction conditions. A variety of tertiary, secondary and primary alkyl bromides undergo reaction to generate C(sp3)-C(sp3) and C(sp2)-C(sp3) bonds in moderate to excellent yields. These redox-neutral reactions feature broad substrate scope (>60 examples), good functional-group tolerance and facile generation of quaternary centers. Mechanistic studies indicate that the simple palladium complex acts as the visible-light photocatalyst and radicals are involved in the process. The experimental part of the paper was very detailed, including the reaction process of 4-Bromotetrahydropyran(cas: 25637-16-5Name: 4-Bromotetrahydropyran)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: preparation of anthranilic acids as antibacterial agents with human serum albumin binding affinity; preparation of antiatherogenic antioxidant di-tert-butyldihydrobenzofuranols via Grignard reactions with di-tert-butyl(hydroxy)benzaldehyde derivatives; synthesis of gephyrotoxin via the Schmidt reaction.Name: 4-Bromotetrahydropyran

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Xue, Weichao’s team published research in Angewandte Chemie, International Edition in 2018 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.HPLC of Formula: 25637-16-5

HPLC of Formula: 25637-16-5In 2018 ,《Bench-Stable Stock Solutions of Silicon Grignard Reagents: Application to Iron- and Cobalt-Catalyzed Radical C(sp3)-Si Cross-Coupling Reactions》 was published in Angewandte Chemie, International Edition. The article was written by Xue, Weichao; Shishido, Ryosuke; Oestreich, Martin. The article contains the following contents:

A robust method for the preparation of silicon-based magnesium reagents is reported. The MgBr2 used in the lithium-to-magnesium transmetalation step is generated in situ from 1,2-dibromoethane and elemental magnesium in hot THF. No precipitation of MgBr2 occurs in the heat, and transmetalation at elevated temperature leads to homogeneous stock solutions of the silicon Grignard reagents that are stable and storable in the fridge. This method avoids the preparation of silicon pronucleophiles such as Si-Si and Si-B reagents. The new Grignard reagents were applied to unprecedented iron- and cobalt-catalyzed cross-coupling reactions of unactivated alkyl bromides. The functional-group tolerance of these magnesium reagents is excellent. In the experiment, the researchers used many compounds, for example, 4-Bromotetrahydropyran(cas: 25637-16-5HPLC of Formula: 25637-16-5)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.HPLC of Formula: 25637-16-5

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Rohe, Samantha’s team published research in Journal of Organic Chemistry in 2018 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Safety of 4-Bromotetrahydropyran

In 2018,Rohe, Samantha; McCallum, Terry; Morris, Avery O.; Barriault, Louis published 《Transformations of Isonitriles with Bromoalkanes Using Photoredox Gold Catalysis》.Journal of Organic Chemistry published the findings.Safety of 4-Bromotetrahydropyran The information in the text is summarized as follows:

Isonitriles have excellent electronic compatibility to react with free radicals. Recently, photoredox catalysis has emerged as a powerful tool for the construction of C-C bonds with few protocols for alkylative heterocycle synthesis through isonitrile addition Herein, it is describe the photocatalytic generation of alkyl radicals from unactivated bromoalkanes as part of an efficient cross-coupling strategy for the diversification of isonitriles using a dimeric gold(I) photoredox catalyst, [Au2(dppm)2]Cl2. In addition to this study using 4-Bromotetrahydropyran, there are many other studies that have used 4-Bromotetrahydropyran(cas: 25637-16-5Safety of 4-Bromotetrahydropyran) was used in this study.

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Safety of 4-Bromotetrahydropyran

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Delgado, Pete’s team published research in Journal of Organic Chemistry in 2021 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Name: 4-Bromotetrahydropyran

Delgado, Pete; Glass, Raoul J.; Geraci, Gina; Duvadie, Rohit; Majumdar, Dyuti; Robinson, Richard I.; Elmaarouf, Imran; Mikus, Malte; Tan, Kian L. published an article in 2021. The article was titled 《Use of Green Solvents in Metallaphotoredox Cross-Electrophile Coupling Reactions Utilizing Lipophilic Modified Dual Ir/Ni Catalyst System》, and you may find the article in Journal of Organic Chemistry.Name: 4-Bromotetrahydropyran The information in the text is summarized as follows:

Facilitating photoredox coupling reactions in process friendly green solvents was achieved by the successful application of the dual Ir/Ni catalyst system with enhanced solubility properties. These photochem. reactions (specifically Br-Br sp2-sp3 cross electrophile coupling) are reported in a head to head comparison to the reactions using standard di-t-Bu bipyridine ligand Ir/Ni catalyst system. This presentation highlights the benefits of altering the solubility properties of the ligands used in the Ir/Ni dual catalyst. The experimental part of the paper was very detailed, including the reaction process of 4-Bromotetrahydropyran(cas: 25637-16-5Name: 4-Bromotetrahydropyran)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: nickel-catalyzed alkyl-alkyl Suzuki coupling reactions with boron reagents, preparation of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans; preparation of aliphatic hydrocarbons via nickel-catalyzed Suzuki cross-coupling with alkylboranes.Name: 4-Bromotetrahydropyran

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Zhang, Rui’s team published research in ACS Medicinal Chemistry Letters in 2018 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: preparation of anthranilic acids as antibacterial agents with human serum albumin binding affinity; preparation of antiatherogenic antioxidant di-tert-butyldihydrobenzofuranols via Grignard reactions with di-tert-butyl(hydroxy)benzaldehyde derivatives; synthesis of gephyrotoxin via the Schmidt reaction.Computed Properties of C5H9BrO

In 2018,Zhang, Rui; Li, Guoqing; Wismer, Michael; Vachal, Petr; Colletti, Steven L.; Shi, Zhi-Cai published 《Profiling and Application of Photoredox C(sp3)-C(sp2) Cross-Coupling in Medicinal Chemistry》.ACS Medicinal Chemistry Letters published the findings.Computed Properties of C5H9BrO The information in the text is summarized as follows:

Recent visible-light photoredox catalyzed C(sp3)-C(sp2) cross-coupling provides a novel transformation to potentially enable the synthesis of medicinal chem. targets. Here, we report a profiling study of photocatalytic C(sp3)-C(sp2) cross-coupling, both decarboxylative coupling and cross-electrophile coupling, with 18 pharmaceutically relevant aryl halides by using either Kessil lamp or our newly developed integrated photoreactor. Integrated photoreactor accelerates reaction rate and improves reaction success rate. Cross-electrophile coupling gives higher success rate with broad substrate scope on alkyl halides than that of the decarboxylative coupling. In addition, a successful application example on a discovery program demonstrates the efficient synthesis of medicinal chem. targets via photocatalytic C(sp3)-C(sp2) cross-coupling by using our integrated photoreactor. In the experiment, the researchers used many compounds, for example, 4-Bromotetrahydropyran(cas: 25637-16-5Computed Properties of C5H9BrO)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: preparation of anthranilic acids as antibacterial agents with human serum albumin binding affinity; preparation of antiatherogenic antioxidant di-tert-butyldihydrobenzofuranols via Grignard reactions with di-tert-butyl(hydroxy)benzaldehyde derivatives; synthesis of gephyrotoxin via the Schmidt reaction.Computed Properties of C5H9BrO

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Boufroua, Naouel’s team published research in New Journal of Chemistry in 2020 | CAS: 85825-79-2

6-Methyldihydro-2H-pyran-2,4(3H)-dione(cas: 85825-79-2) belongs to tetrahydropyran. 2-Tetrahydropyranyl (THP-) ethers derived from the reaction of alcohols and 3,4-dihydropyran are commonly used as protecting groups in organic synthesis. Furthermore, a tetrahydropyran ring system, i.e., five carbon atoms and an oxygen, is the core of pyranose sugars, such as glucose.Application of 85825-79-2

In 2020,New Journal of Chemistry included an article by Boufroua, Naouel; Dunach, Elisabet; Fontaine-Vive, Fabien; Achouche-Bouzroura, Samia; Poulain-Martini, Sophie. Application of 85825-79-2. The article was titled 《In(OTf)3-catalysed easy access to dihydropyranocoumarin and dihydropyranochromone derivatives》. The information in the text is summarized as follows:

In(OTf)3-catalyzed, regioselective and generalizable method, for allylation/cyclization of β-ketolactone-type heterocyclic compounds was developed. This reaction is proposed to proceed one-pot, through a Friedel-Crafts C-allylation followed by cyclization. This process represents a green synthetic method, as AcOH is the only isolated byproduct. A protocol applicable for the construction of biol. active dihydropyranocoumarin and dihydropyranochromone derivatives was reported. In the experimental materials used by the author, we found 6-Methyldihydro-2H-pyran-2,4(3H)-dione(cas: 85825-79-2Application of 85825-79-2)

6-Methyldihydro-2H-pyran-2,4(3H)-dione(cas: 85825-79-2) belongs to tetrahydropyran. 2-Tetrahydropyranyl (THP-) ethers derived from the reaction of alcohols and 3,4-dihydropyran are commonly used as protecting groups in organic synthesis. Furthermore, a tetrahydropyran ring system, i.e., five carbon atoms and an oxygen, is the core of pyranose sugars, such as glucose.Application of 85825-79-2

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Zhou, Xiao’s team published research in Advanced Synthesis & Catalysis in 2022 | CAS: 25637-16-5

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: preparation of anthranilic acids as antibacterial agents with human serum albumin binding affinity; preparation of antiatherogenic antioxidant di-tert-butyldihydrobenzofuranols via Grignard reactions with di-tert-butyl(hydroxy)benzaldehyde derivatives; synthesis of gephyrotoxin via the Schmidt reaction.Safety of 4-Bromotetrahydropyran

In 2022,Zhou, Xiao; Guo, Lin; Zhang, Haoxiang; Xia, Raymond Yang; Yang, Chao; Xia, Wujiong published an article in Advanced Synthesis & Catalysis. The title of the article was 《Nickel-Catalyzed Reductive Acylation of Carboxylic Acids with Alkyl Halides and N-Hydroxyphthalimide Esters Enabled by Electrochemical Process》.Safety of 4-Bromotetrahydropyran The author mentioned the following in the article:

A sustainable Ni-catalyzed reductive acylation reaction of carboxylic acids via an electrochem. pathway was presented, affording a ketones ArC(O)R [Ar = Ph, 4-MeC6H4, 4-PhC6H4, etc.; R = n-Bu, CH(Me)2, CH2Cy, etc.] as major products. The reaction proceeded at ambient temperature using unactivated alkyl halides and N-hydroxyphthalimide (NHP) esters as coupling partners, which exhibited several synthetic advantages, including mild conditions and convenience of amplification (58% yield for 6 mmol scale reaction). In the part of experimental materials, we found many familiar compounds, such as 4-Bromotetrahydropyran(cas: 25637-16-5Safety of 4-Bromotetrahydropyran)

4-Bromotetrahydropyran(cas: 25637-16-5) is often used as reactant for: preparation of anthranilic acids as antibacterial agents with human serum albumin binding affinity; preparation of antiatherogenic antioxidant di-tert-butyldihydrobenzofuranols via Grignard reactions with di-tert-butyl(hydroxy)benzaldehyde derivatives; synthesis of gephyrotoxin via the Schmidt reaction.Safety of 4-Bromotetrahydropyran

Referemce:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics