The effect of the change of synthetic route on the product 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Application of 50501-07-0 can be used in many types of reactions. And in most cases, this compound has more advantages.

Application of 50501-07-0. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: Ethyl indoline-2-carboxylate, is researched, Molecular C11H13NO2, CAS is 50501-07-0, about Gold(0) catalyzed dehydrogenation of N-heterocycles. Author is Kumaran, Elumalai; Leong, Weng Kee.

Gold nanoclusters were good catalyst precursors for the catalytic dehydrogenation of indolines to obtain indoles I [R1 = H, 5-Me, 5-F, 5-Br, 5-NO2, 6-NO2; R2 = H, Me, CO2Me, CO2Et]. Furthermore, this method was used to synthesize quinolines and quinazolines II [R3 = H, 4-ClC6H4, 2-furyl, etc.; R4 = H, 6-Br, 6,8-di-Br; X = CH, N] from tetrahydroquinolines and tetrahydroquinazolines. The catalytically active species was presumably Au(0) nanoparticles.

After consulting a lot of data, we found that this compound(50501-07-0)Application of 50501-07-0 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

The influence of catalyst in reaction 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Application In Synthesis of Ethyl indoline-2-carboxylate can be used in many types of reactions. And in most cases, this compound has more advantages.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Hlasta, Dennis J.; Luttinger, Daniel; Perrone, Mark H.; Silbernagel, Marla J.; Ward, Susan J.; Haubrich, Dean R. researched the compound: Ethyl indoline-2-carboxylate( cas:50501-07-0 ).Application In Synthesis of Ethyl indoline-2-carboxylate.They published the article 《α2-Adrenergic agonists/antagonists: the synthesis and structure-activity relationships of a series of indolin-2-yl and tetrahydroquinolin-2-yl imidazolines》 about this compound( cas:50501-07-0 ) in Journal of Medicinal Chemistry. Keywords: indolinylimidazoline preparation adrenergic agonist antagonist; quinolinylimidazoline preparation adrenergic agonist antagonist; structure activity adrenergic indolinylimidazoline. We’ll tell you more about this compound (cas:50501-07-0).

The synthesis and α2-adrenergic activity of a series of indolin-2-yl- and tetrahydroquinolin-2-ylimidazolines, e.g. I (R = Me, Et, allyl, Ph, CH2Ph, etc.; R1 = 5-F, 5-Cl, etc.) and II (R = H, Me) are described. The indolin-2-ylimidazoline I (R = Me, R1 = H) has potent α2-adrenergic agonist and antagonist activity. The modification of the substituents on the indoline ring of I led to the separation of these activities. Substitution on the aromatic ring of I with halogen or increasing the size of the N-alkyl substituent of I gave α2-adrenergic antagonists without agonist activity. The N-allylindoline I (R = allyl, R1 = H) is more potent than idazoxan in vitro and is equipotent in vivo, but is less receptor-selective (α2 vs. α1) than idazoxan. cis-1,3-Dimethylindolin-2-ylimidazoline is an α2-adrenergic agonist equal in potency to clonidine in vitro, whereas trans-1,3-dimethylindolin-2-ylimidazoline is a moderately potent α2-adrenergic antagonist.

After consulting a lot of data, we found that this compound(50501-07-0)Application In Synthesis of Ethyl indoline-2-carboxylate can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

The Absolute Best Science Experiment for 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)COA of Formula: C11H13NO2 can be used in many types of reactions. And in most cases, this compound has more advantages.

Jaiswal, Garima; Subaramanian, Murugan; Sahoo, Manoj K.; Balaraman, Ekambaram published the article 《A Reusable Cobalt Catalyst for Reversible Acceptorless Dehydrogenation and Hydrogenation of N-Heterocycles》. Keywords: cobalt complex preparation surface structure; azaarene cobalt complex catalyst dehydrogenation; nitrogen heterocycle compound cobalt complex catalyst hydrogenation.They researched the compound: Ethyl indoline-2-carboxylate( cas:50501-07-0 ).COA of Formula: C11H13NO2. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:50501-07-0) here.

A highly efficient reusable cobalt-based heterogeneous catalyst for reversible dehydrogenation and hydrogenation of N-heterocycles was repoted. Both the acceptorless dehydrogenation (ADH) and the hydrogenation processes operated under mild and benign conditions.

After consulting a lot of data, we found that this compound(50501-07-0)COA of Formula: C11H13NO2 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Discover the magic of the 16400-32-1

After consulting a lot of data, we found that this compound(16400-32-1)Name: 1-Bromo-2-pentyne can be used in many types of reactions. And in most cases, this compound has more advantages.

Name: 1-Bromo-2-pentyne. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 1-Bromo-2-pentyne, is researched, Molecular C5H7Br, CAS is 16400-32-1, about Stereoselective Synthesis of trans-Decalin-Based Spirocarbocycles via Photocyclization of 1,2-Diketones. Author is Chen, Sijia; Zhang, Zhongchao; Jiang, Chongguo; Zhao, Chunbo; Luo, Haojie; Huang, Jun; Yang, Zhen.

Diastereoselective synthesis of the trans-decalin-based α-hydroxyl butanone spirocarbocycles, e.g., I bearing all-carbon quaternary stereogenic centers was achieved via Norrish-Yang photocyclization of trans-decalin-substituted-2,3-butanediones using daylight. D. functional theory (DFT) calculations suggested that this diastereoselective reaction was affected by both substrate conformation and intramol. hydrogen bonds. The developed chem. could be applied to synthesizing the derivatives of the trans-decalin-based biol. important natural products.

After consulting a lot of data, we found that this compound(16400-32-1)Name: 1-Bromo-2-pentyne can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Let`s talk about compounds: 16400-32-1

After consulting a lot of data, we found that this compound(16400-32-1)Synthetic Route of C5H7Br can be used in many types of reactions. And in most cases, this compound has more advantages.

Synthetic Route of C5H7Br. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 1-Bromo-2-pentyne, is researched, Molecular C5H7Br, CAS is 16400-32-1, about Visible-Light-Induced Radical Carbo-Cyclization/gem-Diborylation through Triplet Energy Transfer between a Gold Catalyst and Aryl Iodides. Author is Zhang, Lumin; Si, Xiaojia; Rominger, Frank; Hashmi, A. Stephen K..

Gem-Diboronates I (X = O, S, NBoc; R1 = H, halo, MeCO, MeO2C, tBu, CF3, MeSO2NH; R2 = H, Me, Et; R3 = H, Me, iPr, Bu) were prepared by photochem. diboration of propargylic substrates 2-I-R1C6H3XCHR3CCR2 with B2pin2 catalyzed by gold complex [Au2(μ-dppm)2(OTf)2] with up to 90% yields. Geminal diboronates have attracted significant attention because of their unique structures and reactivity. However, benzofuran-, indole- and benzothiophene-based benzylic gem-diboronates, building blocks for biol. relevant compounds, are unknown. A promising protocol using visible light and aryl iodides for constructing valuable building blocks, including benzofuran-, indole- and benzothiophene-based benzylic gem-diboronates, via radical carbo-cyclization/gem-diborylation of alkynes with a high functional group tolerance is presented. The utility of these gem-diboronates has been demonstrated by a ten gram scale conversion, by versatile transformations, by including the synthesis of approved drug scaffolds and two approved drugs, and even by polymer synthesis. The mechanistic investigation indicates that the merging of the dinuclear gold catalyst (photoexcitation by 315-400 nm UVA light) with Na2CO3 is directly responsible for photosensitization of aryl iodides (photoexcitation by 254 nm UV light) with blue LEDs light (410-490 nm, λmax = 465 nm) through an energy transfer (EnT) process, followed by homolytic cleavage of the C-I bond in the aryl iodide substrates.

After consulting a lot of data, we found that this compound(16400-32-1)Synthetic Route of C5H7Br can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

The Best Chemistry compound: 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Category: tetrahydropyran can be used in many types of reactions. And in most cases, this compound has more advantages.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Bulletin of the Korean Chemical Society called Introduction of heterocycles at the 2-position of indoline as ester bioisosteres, Author is Lee, Sunkyung; Yi, Kyu Yang; Yoo, Sung-eun, which mentions a compound: 50501-07-0, SMILESS is O=C(C1NC2=C(C=CC=C2)C1)OCC, Molecular C11H13NO2, Category: tetrahydropyran.

Compounds were prepared with heterocyclic replacements for metabolically unstable esters of benzopyranyl indole-2-carboxylic esters, which showed good in vitro and in vivo cardioprotective efficacies possibly through the opening of mitochondrial ATP-sensitive potassium channel (KATP). Initially, indolin-2-yl-heterocycles were constructed using unprotected indoline-2-carboxylic acid, but the cyclization was proceeded with oxidation of the indoline ring to the indole, which did not react with benzopyranyl epoxide. An N-BOC group was introduced to deplete the electron d. of the indoline ring. Various indolin-2-yl-heterocycles, such as I and II, were prepared by the cyclization of the building blocks including carboxamide, β-hydroxy amide, hydrazide, nitrile starting from N-BOC-indoline-2-carboxylic acid.

After consulting a lot of data, we found that this compound(50501-07-0)Category: tetrahydropyran can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 98006-90-7

After consulting a lot of data, we found that this compound(98006-90-7)Name: 2-Bromo-5-methylpyrazine can be used in many types of reactions. And in most cases, this compound has more advantages.

Name: 2-Bromo-5-methylpyrazine. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 2-Bromo-5-methylpyrazine, is researched, Molecular C5H5BrN2, CAS is 98006-90-7, about Antituberculotics. XXXII. Functional derivatives of 5-methyl-2-pyrazinecarboxylic acid. Author is Vontor, T.; Palat, K.; Oswald, J.; Odlerova, Z..

2,5-Dimethylpiperazine I (R = Me) was oxidized to the oxide followed by acetylation with Ac2O and hydrolysis to give I (R = CH2OH), which was oxidized to I (R = CHO, CO2H). I (R = CO2H) was esterified followed by ammonolysis to give I (R = CONH2)(II). II was also prepared in 3 steps from I (R = OH) via I (R = cyano). II had antitubercular activity against Mycobacterium tuberculosis corresponding to the effect of pyrazinamide.

After consulting a lot of data, we found that this compound(98006-90-7)Name: 2-Bromo-5-methylpyrazine can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Properties and Exciting Facts About 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Formula: C11H13NO2 can be used in many types of reactions. And in most cases, this compound has more advantages.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Zhang, Yin-Jun; Chen, Chang-Sheng; Liu, Hao-Tian; Chen, Jia-Lin; Xia, Ying; Wu, Shi-Jin researched the compound: Ethyl indoline-2-carboxylate( cas:50501-07-0 ).Formula: C11H13NO2.They published the article 《Purification, identification and characterization of an esterase with high enantioselectivity to (S)-ethyl indoline-2-carboxylate》 about this compound( cas:50501-07-0 ) in Biotechnology Letters. Keywords: esterase enantioselectivity ethyl indoline 2carboxylate; (S)-indoline-2-carboxylic acid; Bacillus aryabhattai B8W22; Characterization; Esterase; Purification. We’ll tell you more about this compound (cas:50501-07-0).

Objective: To purify an esterase which can selectively hydrolyze (R,S)-Et indoline-2-carboxylate to produce (S)-indoline-2-carboxylic acid and characterize its enzymic properties. Results: An intracellular esterase from Bacillus aryabhattai B8W22 was isolated and the purified protein was identified as a carboxylesterase by MALDI-TOF mass spectrometry. The enzyme (named BaCE) was 59.03-fold purification determined to be of approx. 35 kDa. Its specific activity was 0.574 U/mL with 20% yield. The enzyme showed maximum activity at pH 8.5 and 30°C and was stable at 20-30°C using pNPB as the substrate. The esterase demonstrated high enantioselectivity toward (S)-Et indoline-2-carboxylate with 96.55% e.e.p at 44.39% conversion, corresponding to an E value of 133.45. Conclusions: In this study, a new esterase BaCE with an apparent mol. mass of 35 kDa was purified to homogeneity for the first time. The esterase from Bacillus aryabhattai B8W22 was isolated with a purification more than 59-fold and a yield of 20% by anion exchange chromatog. and hydrophobic interaction chromatog. And its biochem. characterization were described in detail with pNPB as substrate. It displayed high enantioselectivity toward (S)-Et indoline-2-carboxylate. We next plan to highly express esterase BaCE in Escherichia coli, and apply it to industrial production of (S)-indoline-2-carboxylic acid.

After consulting a lot of data, we found that this compound(50501-07-0)Formula: C11H13NO2 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

Why do aromatic interactions matter of compound: 50501-07-0

After consulting a lot of data, we found that this compound(50501-07-0)Category: tetrahydropyran can be used in many types of reactions. And in most cases, this compound has more advantages.

Category: tetrahydropyran. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: Ethyl indoline-2-carboxylate, is researched, Molecular C11H13NO2, CAS is 50501-07-0, about Synthesis of Azoles Condensed with, or Linked to, Nitroxides. Author is Bognar, Balazs; Kalai, Tamas; Gulyas-Fekete, Gergely; Lazsanyi, Noemi; Hideg, Kalman.

Nitroxides connected to indoles, tetrazoles or 1,3,4-oxadiazoles were synthesized by conventional and microwave-assisted cyclization reactions. New approaches to pyrrole-, pyrazole-, and triazole-annulated nitroxides are described. The authors showed that a Diels-Alder reaction of a N-tert-butoxycarbonyl derivative of (4,4,6,6-tetramethyl-2,4,6,7-tetrahydro-5H-pyrrolo[3,4-c]pyridin-5-yl)oxidanyl gave polycyclic scaffolds condensed with a six-membered nitroxide. The synthesis of the target compounds was achieved using as starting materials 3-cyano-2,5-dihydro-2,2,5,5-tetramethyl-1H-pyrrol-1-yloxy radical, 4-cyano-3,6-dihydro-2,2,6,6-tetramethyl-1(2H)-pyridinyloxy radical, 4-cyano-2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO derivative), 3-formyl-2,5-dihydro-2,2,5,5-tetramethyl-1H-pyrrol-1-yloxy radical and similar nitroxide radical derivatives The title compounds thus formed included triazole-nitroxide radical derivatives, benzotriazole-nitroxide radical derivatives, pyrrole-nitroxide radical derivatives, indole-nitroxide radical derivatives and related substances.

After consulting a lot of data, we found that this compound(50501-07-0)Category: tetrahydropyran can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics

A small discovery about 82954-65-2

After consulting a lot of data, we found that this compound(82954-65-2)SDS of cas: 82954-65-2 can be used in many types of reactions. And in most cases, this compound has more advantages.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: (S)-(2,2-dimethyl-[1,3]-dioxolan-4-yl)-methylamine, is researched, Molecular C6H13NO2, CAS is 82954-65-2, about Syntheses and structures of diastereomerically pure 2,6-disubstituted 3-morpholinones, the main research direction is morpholinone disubstituted diastereomerically pure.SDS of cas: 82954-65-2.

The syntheses of the hitherto unknown diastereomerically pure 2,6-disubstituted 3-morpholinones I [R = Me, CH2OH, (CH2)3OH] are described. The necessary educts, the optically active amino alcs. (S)-H2NCH2CH(OH)CH2OH and (S)-H2NCH2CH(OH)(CH2)3OH are synthesized by improved or new procedures. A two-step synthetic sequence via the 2-chloro-N-(2-hydroxyethyl)carboxamides leads to products much purer than those obtained by the known direct condensation of amino alcoholates with α-halogeno carboxylic esters. The structures of the title compounds are characterized by their NMR spectra.

After consulting a lot of data, we found that this compound(82954-65-2)SDS of cas: 82954-65-2 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics