Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 16400-32-1, is researched, SMILESS is CCC#CCBr, Molecular C5H7BrJournal, Article, ACS Medicinal Chemistry Letters called Targeting Orthosteric and Allosteric Pockets of Aromatase via Dual-Mode Novel Azole Inhibitors, Author is Caciolla, Jessica; Spinello, Angelo; Martini, Silvia; Bisi, Alessandra; Zaffaroni, Nadia; Gobbi, Silvia; Magistrato, Alessandra, the main research direction is breast cancer aromatase inhibitors mol dynamics cytochromes P450.SDS of cas: 16400-32-1.
Breast cancer (BC) is the most diffused cancer type in women and the second leading cause of death among the female population. Effective strategies to fight estrogen responsive (ER+) BC, which represents 70% of all BC cases, rely on estrogen deprivation, via the inhibition of the aromatase enzyme, or the modulation of its cognate estrogen receptor. Current clin. therapies significantly increased patient survival time. Nevertheless, the onset of resistance in metastatic BC patients undergoing prolonged treatments is becoming a current clin. challenge, urgently demanding to devise innovative strategies. In this context, here we designed, synthesized, and performed in vitro inhibitory tests on the aromatase enzyme and distinct ER+/ER- BC cell line types of novel azole bridged xanthones. These compounds are active in the low μM range and behave as dual-mode inhibitors, targeting both the orthosteric and the allosteric sites of the enzyme placed along one access channel. Classical and quantum-classical mol. dynamics simulations of the new compounds, as compared with selected steroidal and nonsteroidal inhibitors, provide a rationale to the observed inhibitory potency and supply the guidelines to boost the activity of inhibitors able to exploit coordination to iron and occupation of the access channel to modulate estrogen production
There are many compounds similar to this compound(16400-32-1)SDS of cas: 16400-32-1. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.
Reference:
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics