With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.220641-87-2,N-Methyltetrahydro-2H-pyran-4-amine,as a common compound, the synthetic route is as follows.
Synthesis of Example 258 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl-tetrahydro-pyran-4-yl-amino)-pyridine-3-carboxylic acid amide A solution of 338 mg (1.0 mmol) 6-chloro-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine-3-carboxylic acid amide (synthesis is described in section b) of example 2), 172 mg (1.5 mmol) N-methyl-tetrahydro-2H-pyran-4-amine and 509 mul (3.0 mmol) DIPEA in NMP (1 ml) was heated in the microwave at 180 C. for 2 h. Subsequently the RM was diluted with a 2M aq. NaOH sol, water and EtOAc and the layers were separated. The organic layer was washed with water and brine, dried over MgSO4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 13:7) provided 77 mg (0.18 mmol, 18%) 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl-tetrahydro-pyran-4-yl-amino)-pyridine-3-carboxylic acid amide (example 258). [M+H]+ 418.2
220641-87-2, 220641-87-2 N-Methyltetrahydro-2H-pyran-4-amine 6991950, aTetrahydropyrans compound, is more and more widely used in various fields.
Reference£º
Patent; Grunenthal GmbH; US2012/101079; (2012); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics